

訊號阻抗耦合驗證 – Sigrity ERC

Addi Lin / Graser 2 / Sep / 2016

© 2016 Graser Technology Co., Ltd. All Rights Reserved.

Topic

• What's OrCAD Sigrity ERC?

OrCAD

- OrCAD Sigrity ERC
 - Trace Reference Check
 - Trace Coupling Check
 - Trace Impedance Check
- OrCAD Sigrity SRC
- Summary

What's OrCAD Sigrity ERC?

- OrCAD[®] Sigrity[™] Electrical Rules Check (ERC) 可使 PCB 設計師快速篩選 PCB 設計的信號品質,而無需給予任何模 擬模型,或者是一個完整信號。
 - 超越 DRC 檢查規範
 - 爲 PCB 設計找出阻抗不連續
 - 進行 layout 走線串擾評估

OrCAD Sigrity ERC 可以不須依賴的 SI 工程師,在 PCB 佈局階段即可以發現信號質量問題,進而提升產品設計效率以達到縮短整體設計時間。

OrCAD Sigrity ERC

2016 Graser Technology Co., Ltd. All Rights Reserved

Layout 阻抗與串擾問題

- Talk about impedance Z0, let's see the following case:
 - After simulation, you set the trace width to be 5 mil in the constraint system to achieve the impedance you want.
 Of course, the following picture will show no DRC violation. But if this is a 2-layers design and...

OrCAD

2. Cross plane split

• Based on upper / lower layer references

- − Trace9047 \rightarrow one section
- − Trace9048 \rightarrow 5 sections

OrCAD

impedance sections.

ERC results				
Trace Name Length (%)	Upper-lyr ref net name	Lower	-lyr ref net name	
Trace9047::DQ0 11.58	GND	VDD		
Trace9048::DQ0 12.74	GND	VDD		
Trace9048::DQ0 1.78	VDD	VDD		
Trace9048::DQ0 0.11	-	VDD	Mater	
Trace9048::DQ0 0.89	GND	VDD	Note: This is	th/
Trace9048::DQ0 1.66	GND	GND	there a	n r0

Graser

走線參考電源層檢查

Trace Reference Plot (expanded)

- <u>Trace cross layer reference</u> shows the net names for the reference plane shapes directly above and below the corresponding trace segment
- <u>Trace coplanar reference</u> shows the net names for the reference plane shapes next to the corresponding trace segment on the same layer

Graser

走線耦合計算

- Trace9047 is one uniform impedance section
- Trace9047 broken into 5 sections based on trace coupling
 - two no coupling sections (1 & 5)
 - two 2-line coupling sections (2 & 4)
 - one 3-line coupling section (3)

ERC results					
Trace Name	Aggressor Trace Names	Coupling Coefficient (%)	Length (%)		
Trace9047::DQ0	-	- ← 1	1.82		
Trace9047::DQ0	Trace9024::DQ1	5.3 ← 2	1.46		
Trace9047::DQ0	Trace9024_Auto_190::DQ1	5.3 ← 3	1.16		
	Trace8280::DQ4	0.6			
Trace9047::DQ0	Trace9024_Auto_191::DQ1	5.3 ← 4	4.10		
Trace9047::DQ0	-	· ← 5	3.04		

Graser

OrCAD

• Visually or tabular result for trace impedance check that shows trace segments mismatch with target impedance.

Cross Probing

Graser

Auto-Zoom in board.

OrCAD

© 2016 Graser Technology Co.,Ltd.All Rights Reserved.

Cross probing helps to resolve issue intuitively

OrCAD

© 2016 Graser Technology Co.,Ltd.All Rights Reserved.

Net count	Net name	Aggressor net with max coupling	Max coupling coefficient	% length with max coupling	% length with coupling coef >0.05	% length with coupling coef 0.001~0.05	Total coupling index (mm-%)
1	P3E_SLOT2_TX_C_DP0-P3E_SLOT2_TX_C_DN0	P3E_SLOT2_TX_C_DP1	0.163%	40.183		40.183	2.605
2	P3E_SLOT2_TX_C_DP1-P3E_SLOT2_TX_C_DN1	P3E_SLOT2_TX_C_DP2	0.573%	1.132		43.513	2.941
3	P3E_SLOT2_TX_C_DP2-P3E_SLOT2_TX_C_DN2	P3E_SLOT2_TX_C_DN1	0.573%	1.138		34.387	2.668
4	P3E_SLOT2_TX_C_DP3-P3E_SLOT2_TX_C_DN3	P3E_SLOT2_TX_C_DN2	łov	36.798		15.328	2.177
5	P3E_SLOT2_TX_C_DP4-P3E_SLOT2_TX_C_DN4	P3E_SLOT2_TX_C_DN3	1.0.	15.686		15.686	0.754
6	P3E_SLOT3_TX_C_DP0-P3E_SLOT3_TX_C_DN0	P3E_SLOT3_TX_C_DP1	0.156%	45.886		45.886	2.881
7	P3E_SLOT3_TX_C_DP1-P3E_SLOT3_TX_C_DN1	P3E_SLOT3_TX_C_DN0	0.147%	46.545		56.715	3.440
8	P3E_SLOT3_TX_C_DP2-P3E_SLOT3_TX_C_DN2	P3E_SLOT3_TX_C_DN1	0.156%	42.769		71.100	4.302
9	P3E SLOT3 TX C DP3-P3E SLOT3 TX C DN3	P3E SLOT3 TX C DN2	0.156%	55.397		60.345	3.541
10	P3E_SLOT3_TX_C_DP4-P3E_SLOT3_TX_C_DN4	P3E_SLOT3_TX_C_DP5	2.808%	26.979		68.281	47.643
11	P3E_SLOT3_TX_C_DP5-P3E_SLOT3_TX_C_DN5	P3E_SLOT3_TX_C_DN4	2.810%	28.293		71.503	54.733
12	P3E SLOT3 TX C DP6-P3E SLOT3 TX C DN6	P3E SLOT3 TX C DN5	2.810%	30.093		62.280	45.025
13	P3E_SLOT3_TX_C_DP7-P3E_SLOT3_TX_C_DN7						

Through this test, you will see,

OrCAD

- Tight coupling pairs
- Max coupling aggressor
- Dangerous vs. safe coupling
 →18X (= 2.81% / 0.156%)

© 2016 Graser Technology Co.,Ltd.All Rights Reserved.

Graser

What is Sigrity SRC?

- Sigrity SRC is <u>Macro</u>, <u>combined</u>, <u>net-level</u> view in <u>time-domain</u> of impact due to ERC violations measured in mv&ps (no device model needed)
 - Setup considering termination impedance, data rate (pulse width, rise/fall time), and amplitude
 - Results with Tx/Rx/NEXT/FEXT waveforms, SI performance metrics
 - Organized to easy SI performance interpretation along with ER
- Practical for board level check (setup, simulation, report)

Time-domain Waveforms

OrCAD_V

© 2016 Graser Technology Co.,Ltd.All Rights Reserved.

Summary

- Sigrity ERC / SRC fills the gap between layout designers and SI engineers
 - Expanded expertise
 - Using same tools
 - Measured by same units

DRC Design Rule Check	ERC Electrical Rule Check	SRC Simulation Rule Check	Simulation Using Device Models
Layout/Board designer		>	SI engineer
Layout tools		→	Simulation tools
Geometry domain (mil/mm)			Electrical domain (mv, ps)

