ERC and SRC Applications In Practical PCB Design Process

Cliff Lin 2016/07/06

Building Forward Together

Abstract

- Overview
- ERC (Electrical Rule Check)
- SRC (Simulation Rule Check)
- Applications
- Summary

Overview

- No models required : easy to run by PCB layout designers
- Detects impedance discontinuities of routed PCB signals
- Detects excessive coupling between routed PCB signals
- Integrated with OrCAD PCB Designer for easy modification of problem signals

Theoretical Background ERC

Coupling is defined with **Near-ended Crosstalk** as a victim.

Eye diagrams of a 5-Gbps pseudorandom bit stream. Left: little loss. Right: same bit pattern when there is a lot of loss, showing the collapse of the eye diagram, and increased jitter, indicated by the widening of the cross-over regions.

- 1. Radiative loss
- **2.** Coupling to adjacent traces
- 3. Impedance mismatches 🚖
- 4. Conductor loss
- **5.** Dielectric loss

Reflection noise Crosstalk noise Power and ground noise

A stripline is routed on an inside layer and has two reference planes.

6

"Ringing" noise at the receiver end of a 1-inch-long controlled-impedance interconnect created because of impedance mismatches and multiple reflections at the ends of the line.

Even if a circuit board is designed with controlled-impedance interconnects, there is still the opportunity for a signal to see an impedance discontinuity from such features as:

- 1. The ends of the line
- 2. A package lead
- 3. An input-gate capacitance
- 4. A via between signal layers
- 5. A corner
- 6. A stub
- 7. A branch
- 8. A test pad
- 9. A gap in the return path
- 10. A neck down in a via field
- 11. A crossover

Unless otherwise specified, as a rough rule of thumb, the reflection noise level should be kept to less than 10% of the voltage swing. For a 3.3-v signal, this is 330 mV of noise.

Fringe fields near a signal line. When a second trace is far away, there is little fringe-field coupling and little cross talk. When the second net is in the vicinity of the fringe fields, there can be excessive coupling and cross talk.

member.

Building Forward Together / 11

Simple rules of thumb for estimating the far-end cross talk for a pair of coupled 50-Ohm microstrips in FR4 for different spacings.

$$FEXT = \frac{V_f}{V_a} = \frac{Len}{RT} \times k_f = \frac{Len}{RT} \times \frac{1}{2v} \times \left(\frac{C_{mL}}{C_L} - \frac{L_{mL}}{L_L}\right)$$

Non-Interleaved

тх	
RX	
тх	
RX	
ТΧ	
RX	

Interleaved

Interleaved mode is implemented on microstrip when FEXT is more significant than NEXT.

On the other hand, non-interleaved routing is implemented stripline when NEXT is more significant than FEXT.

[Signal Integrity Challenges and Design Practices on a Mobile Platform]

24" long microstrip traces example

When loss is important, loosely coupled differential pairs should be used.

When interconnect density and noise immunity are important, tightly coupled differential pairs should be used.

With no overriding constraint, loose coupling with a spacing equal to twice the trace width offers a reasonable compromise in providing the lowest loss at the highest interconnect density.

Loosely coupled vs. Tightly coupled differential pair with gap in return path

Reference Plane

For high frequency application, using low DF solder mask can help to decrease the microstrip insertion loss significantly, ~10% improvement when comparing the traditional solder mask.

The optimum coating thickness for decreasing far-end noise will depend on all the geometry features and dielectric constants.

Abstract

- Overview
- ERC (Electrical Rule Check)
- SRC (Simulation Rule Check)
- Applications
- Summary

ERC-based signal quality checks analyze at the individual, segment-level view in the geometry domain for signal quality, including:

- Trace reference
- Trace reference-aware impedance
- Trace reference-aware coupling
- Differential pair routing phase
- Number of vias and via locations

Layout view shows same trace impedance

OrCAD Sigrity ERC reference-aware coupling shows increased coupling

OrCAD Sigrity ERC reference-aware impedance shows reference discontinuities

...due to voids on reference planes

All analysis is organized for easy signal performance interpretation by the PCB layout designer, NOT the signal integrity (SI) expert.

Trace coupling parameters

You can set up trace coupling parameters for the impedance/coupling/reference check. The trace coupling parameters will be used as a threshold. The trace couplings below this threshold will be ignored.

In order for trace coupling to be included,

- The trace near end coupling coefficients must be larger than the given value, and
- The coupled trace segment length must be longer than the NEXT saturation length. The saturation length is calculated using the rise time as

L _{saturatio}	$t_{pn} = t_r * v$	0.5 * Trise * V
Coupling	2 %	
Rise time	50 ps	

The smaller the coupling % and rise time thresholds, the more trace segments will be considered as coupled lines. This results in a longer simulation time.

Sigrity BrdExtractor -Settings-Translate MIXED layer to: Plane or Signal Allow patches on signal layers ✓ Distinguish shapes of different nets by color Add pseudo plane(s) if lack of plane or patch Append net name to objects Include elements with no net names Create component model names based upon component part in Remove non-functional pads Translate antipads as voids Translate only voltage nets ✓ Treat pad on dielectric layer as drill Use "Board Geometry > Design Outline" for outline Generate via if padstack drill size is zero Calculate via plating using "Drill/Slot symbol" values Metal layer thickness as plating thickness

	ERC - Trace Imp/Cpl/Ref Check							
	Layout Setu	۲						
	Load La							
	Check S	tackup						
	Prepare	Nets						
	Simulation	Setup						
	t Englate	p Frace Check	Mada					
		гасе Спеск	Mode					
	Option	al: Set up N	let Groups					
u	Optior	al: Show N	et Groups					
	Set up 1	Frace Check	Parameters					
	Save Fil	e without E	rror Check					
	Simulation			٢				
	- · ·			0 514				
	lechnology	Data rate	Fastest rise time	Scope BW				
	Lechnology Ethernet 10base-T	Data rate 10 Mbps	Fastest rise time 30 ns	Scope BW 600 MHz				
	Ethernet 10base-T Ethernet 100base-T	Data rate 10 Mbps 100 Mbps	Fastest rise time 30 ns 3 ns	600 MHz 600 MHz				
	Ethernet 10base-T Ethernet 100base-T Ethernet 100base-T	Data rate 10 Mbps 100 Mbps 250 Mbps x 4	Fastest rise time 30 ns 3 ns 1.2 ns	600 MHz 600 MHz 1 GHz				
	Ethernet 10base-T Ethernet 100base-T Ethernet 1000base-T USB 2.0	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps	30 ns 3 ns 1.2 ns 300 ps	600 MHz 600 MHz 1 GHz 2.5 G				
	Iechnology Ethernet 10base-T Ethernet 100base-T Ethernet 1000base-T USB 2.0 USB 3.0	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps	Satest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz				
	Iechnology Ethernet 10base-T Ethernet 100base-T Ethernet 1000base-T USB 2.0 USB 3.0 DDR1	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz				
	Iechnology Ethernet 10base-T Ethernet 100base-T USB 2.0 USB 3.0 DDR1 DDR2	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz				
	Iechnology Ethernet 10base-T Ethernet 100base-T Ethernet 1000base-T USB 2.0 USB 3.0 DDR1 DDR2 DDR3	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 8 GHz				
	Iechnology Ethernet 100base-T Ethernet 1000base-T Ethernet 1000base-T USB 2.0 USB 3.0 DDR1 DDR2 DDR3 DDD4	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s 3200 MT/s	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps 75 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 8 GHz 12 GHz				
	Iechnology Ethernet 10base-T Ethernet 1000base-T Ethernet 1000base-T USB 2.0 USB 3.0 DDR1 DDR2 DDR3 DDD4 GDDR5	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s 3200 MT/s 8 Gbps	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps 75 ps 30 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 8 GHz 12 GHz 16 GHz				
	Iechnology Ethernet 10base-T Ethernet 1000base-T Ethernet 1000base-T USB 2.0 USB 3.0 DDR1 DDR2 DDR3 DDD4 GDDR5 SATA 3G	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s 3200 MT/s 8 Gbps 3 Gbps	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps 75 ps 30 ps 67 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 8 GHz 12 GHz 12 GHz 4 GHz 8 GHz 12 GHz 16 GHz 12 GHz				
	Iechnology Ethernet 10base-T Ethernet 1000base-T Ethernet 1000base-T USB 2.0 USB 3.0 DDR1 DDR2 DDR3 DDD4 GDDR5 SATA 3G SATA 6G	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s 3200 MT/s 8 Gbps 3 Gbps 6 Gbps	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps 75 ps 30 ps 67 ps 33 ps	Scope BV 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 8 GHz 12 GHz 12 GHz 12 GHz 16 GHz 16 GHz 16 GHz 16 GHz				
	IechnologyEthernet 10base-TEthernet 100base-TUSB 2.0USB 3.0DDR1DDR2DDR3DDD4GDDR5SATA 3GSATA 6GSAS-2	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s 3200 MT/s 8 Gbps 3 Gbps 6 Gbps 6 Gbps	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps 75 ps 30 ps 67 ps 33 ps 42 ps	Scope BW 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 8 GHz 12 GHz 16 GHz 16 GHz 16 GHz 16 GHz 16 GHz				
	IechnologyEthernet 10base-TEthernet 100base-TUSB 2.0USB 3.0DDR1DDR2DDR3DDD4GDDR5SATA 3GSATA 6GSAS-2SAS-3	Data rate 10 Mbps 100 Mbps 250 Mbps x 4 480 Mbps 5 Gbps 400 MT/s 1066 MT/s 2133 MT/s 3200 MT/s 8 Gbps 3 Gbps 6 Gbps 6 Gbps 12 Gbps	Fastest rise time 30 ns 3 ns 1.2 ns 300 ps 50 ps 500 ps 250 ps 100 ps 75 ps 30 ps 67 ps 33 ps 42 ps 21 ps	Scope BV 600 MHz 600 MHz 1 GHz 2.5 G 12 GHz 2 GHz 4 GHz 12 GHz 16 GHz 16 GHz 16 GHz 16 GHz 30 GHz				

3.4 Gbps

5.4 Gbps

50 ps

50 ps

8 GHz

13 GHz

HDMI 1.4

DisplayPort 1.2

~	
~	-Impedance/Coupling Check Option-
	Impedance coupling check option
	✓ Impedance
	Coupling Coefficient
	Trace coupling paramters
	Coupling 2 %
	Rise time 100 DS
	N

-Nets Selection Option-----

O Check all signal nets(enable all signal nets)

Check all enabled signal nets

Check an enabled signal nets

Notes: Go to Net Manager to enable nets for Trace Check

O Check by NetGroup

Notes:

1.Detailed and interactive results are available with Check by NetGroup. 2.A pair of extended nets are reported as one signal.

Conlanar Tracco
Copianal Traces
🗹 Detect and model the coplanar traces

Net count	Net name		Trace Name	Imp(Ohm)	Length (mil)	Trace Delay (ps)	(x;y) Location - (mil)	Layer	R (mOhm)	L (nH)	C (pF)
1	G_DDI0_TX0_N		Trace11409::X_PCIEX1_TX1_P_C	53.7	11.453	1.6	(1455.049;247.951)	Signal\$AW_L10	1.652	0.088	0.030
2	G_DDI0_TX0_P		Trace11410::X_PCIEX1_TX1_P_C	53.7	4.961	0.7	(1459.098;241.421)	Signal\$AW_L10	0.716	0.038	0.013
3	X_PCIEX1_TX1_	N	Trace11410::X_PCIEX1_TX1_P_C	52.4	0.012	0.0	(1459.098;238.935)	Signal\$AW_L10	0.002	0.000	0.000
4	X_PCIEX1_TX1_	N_C	Trace11410::X_PCIEX1_TX1_P_C	44.5	7.039	1.0	(1459.098;235.409)	Signal\$AW_L10	1.015	0.045	0.023
5	X_PCIEX1_TX1_	Р	Trace11411::X_PCIEX:_TX1_P_C	44.5	47.788	6.8	(1475.994;214.994)	Signal\$AW_L10	6.894	0.303	0.153
6	X_PCIEX1_TX1_	P_C	Trace11412::X_PCV_X1_TX1_P_C	44.5	79.000	11.3	(1532.390;198.098)	Signal\$AW_L10	11.396	0.502	0.254
			Trace11413::X_PCIEX1_TX1_P_C	44.5	63.640	9.1	(1594.390;175.598)	Signal\$AW_L10	9.180	0.404	0.204
			Trace11414:X_PCIEX1_TX1_P_C	44.5	172.000	24.6	(1702.890;153.098)	Signal\$AW_L10	24.812	1.092	0.552
			Trace11415::X_PCIEX1_TX1_P_C	44.5	34.620	4.9	(1801.130;140.858)	Signal\$AW_L10	4.994	0.220	0.111
			Trace11416::X_PCIEX1_TX1_P_C	44.5	34.000	4.9	(1830.370;128.618)	Signal\$AW_L10	4.905	0.216	0.109
			Trace11417::X_PCIEX1_TX1_P_C	44.5	9.546	1.4	(1850.746;125.244)	Signal\$AW_L10	1.377	0.061	0.031
			Trace11417::X_PCIEX1_TX1_P_C	66.6	1.654	0.2	(1854.706;121.285)	Signal\$AW_L10	0.239	0.016	0.004
			Trace11418::X_PCIEX1_TX1_P_C	66.6	4.429	0.6	(1855.291;118.486)	Signal\$AW_L10	0.639	0.042	0.009
			Trace11419::X_PCIEX1_TX1_P_C	66.6	5.058	0.7	(1853.503;114.483)	Signal\$AW_L10	0.730	0.048	0.011
			Trace11419::X_PCIEX1_TX1_P_C	44.5	1.874	0.3	(1851.052;112.033)	Signal\$AW_L10	0.270	0.012	0.006
			Trace11420::X_PCIEX1_TX1_P_C	46.4	1.873	0.3	(1850.390;110.433)	Signal\$BOTTOM	0.162	0.013	0.006
			Trace11420::X_PCIEX1_TX1_P_C	96.7	45.127	6.1	(1850.390;86.933)	Signal\$BOTTOM	3.908	0.594	0.063
			Trace11421.X_PCIEX1_TX1_P (46.4	24,189	3.5	(1463.000;276.094)	Signal\$TOP	2.095	0.164	0.076
			Trace11422::X_PCIEX1_TX1_P_C	46.4	16.971	2.5	(1457.000;258.000)	Signal\$TOP	1.469	0.115	0.054
			** * * Trace11414:X_PCIEX1_TX1_P_C 44.5(0hm)		85 80 75 70 65 60	 Planesi_S_GND SignalsAU_L0 SignalsAL1_KND SignalsAL1_KND SignalsAU_L0 	Trace1142 Select Net Disable Net	0:X_PCIEX1_TX1_P_C K_PCIEX1_TX1_P_C X_PCIEX1_TX1_P_C	76.453	3.971	1.709 SignalStOP Planesiz_G SignalSAW Planesiz_F Planesiz_F Planesiz_F SignalSAW Planesiz_F SignalSAW SignalSAW SignalSAW SignalSAW SignalSAW SignalSAW

20

Is trace-to-trace coupling included in impedance calculation?

No.

Can trace impedance be determined only thru co-planar cooupling?

For traces without reference planes, they may depend on the ground shapes on the same layer as signal return. Trace check impedance cannot be determined using co-planar coupling.

Are differential trace impedance and coupling check results available?

Starting from ASI 16.61, differential impedance and coupling are available. In order to get differential trace check results, differential nets need to be classified when forming net groups.

Is trapezoidal cross-section considered in the trace check?

Yes. You should use workflow step Check Stackup to set up trapezoidal angles.

Is via impedance/coupling included in the trace check? No.

Is via delay calculated in the trace check?

No.

No.

Is coupling between different net groups included

If multiple net groups are included in one trace check simulation, couplings among nets in all net groups are included.

Is coupling for not enabled nets included?

Abstract

- Overview
- ERC (Electrical Rule Check)
- SRC (Simulation Rule Check)
- Applications
- Summary

This net-level PCB layout checking engine is based on time-domain simulation (device simulation models are not needed), and considers:

After SRC simulation, TX, RX, NEXT (near end xtalk), and FEXT (far end xtalk) waveforms are available, as well as SI metrics calculated using RX and FEXT waveforms as signal quality indicators.

$Int_sig = \int_{t_1}^{t_2} Rx(t) dt$	Higher channel loss will decrease the SIG. Trace length, dielectric loss, and conductive loss will all increase the channel loss. The higher SIG, the better signal integrity is.
$Int _ISI = \int_0^{t_1} Rx(t) dt + \int_{t_2}^{t_{max}} Rx(t) dt$	Loss and impedance discontinuity will both increase the "ISI" (Intersymbol interference). The larger the ISI, the worse signal integrity is.
$Int xtk = \sum_{i=1}^{t_{max}} fext_i(t) dt$	Far-end crosstalk is calculated by including all the other signals which is included in the simulation. The larger FEXT, the worse signal integrity is.
SN _difference = (Int _sig) - (Int _ISI) - (Int _xtk)	The larger value , the better signal integrity is.
$SN_ratio = \frac{Int_sig}{(Int_ISI) + (Int_xtk)}$	The concept is similar to SNR (signal-to-noise ratio) The larger value , the better signal integrity is.

Net group names	Tx component	Net name 🛆	Passive component	Net name	Passive component	Net name	Rx component(active)	"Rx component(standby)	Rx component(no populated)	t FIR filter	Pulse center
■ PCIEX1_TX_PCH	1_CN3										
	PCH1	X_PCIEX1_1_TX_N_C	C27	X_PCIEX1_1_TX_N	-	-	CN3	-	-	yes	v-max
	🗄 PCH1	X_PCIEX1_1_TX_P_C	C26	X_PCIEX1_1_TX_P	-	-	CN3	-	-	yes	v-max
	PCH1	X_PCIEX1_2_TX_N_C	C25	X_PCIEX1_2_TX_N	-	-	CN3	-	-	yes	v-edge
	E PCH1	X_PCIEX1_2_TX_P_C	C24	X_PCIEX1_2_TX_P	-	-	CN3	-	-	yes	v-max
	PCH1	X_PCIEX1_3_TX_N_C	C23	X_PCIEX1_3_TX_N	-	-	CN3	-	-	yes	v-max
	H PCH1	X_PCIEX1_3_TX_P_C	C22	X_PCIEX1_3_TX_P	-	-	CN3	-	-	yes	v-max
Net group names	Tx compone	nt Net name	Rx	Rx	Rx comp	onent(n	ot FIR Pulse cen	ter			
	David		component(active) component(stand)	oy populated	0	filter				
■ PCIEX1_RX_CN3	_PCH1	Y DOLEVI I DY N	DOLL								
	CN3	X_PUEXI_I_KA_N	PCHI PCHI	-	-		yes v-max				
	CN3	X PCIEX1 2 RX N	PCH1	-			yes v-max				
	CN3	X PCIEX1 2 RX P	PCH1	-	-		ves v-max				
	CN3	X PCIEX1 3 RX N	PCH1	-	-		yes v-max				
	🕀 CN3	X_PCIEX1_3_RX_P	PCH1	-	-		yes v-max			DDR,	Single-e
									L		
							V				
filter is recommen	ded to be enal	oled for SERDES li	nk SI Me	trics Check Whe	n		• max				
in applied:					,11						
a is applied.											
Coefficient is calculated	ated for each r	et by forcing the firs	st post cu	irser 0			/				/
'h e mule e 'e h eleme						S	ERDES		v	center	1
ne puise is balanc	ed and centere	ed, making the SI M	etrics mo	bre reasonable			/			center	
herwise, the pulse	is not centered	I, causing large ISI	noise)								
							/				
										· .	
							- ť1	t ₂		U Rise	Cross Center

28

Time (ns)

If SN_difference is lower than the reference and the INT_XTK is shown to be higher, use this file to quickly identify and mitigate XTK causes.

4.1.1 P	Performance	metrics fo	r net g	roup P(CIEX1_	ТΧ_	PCH1_	CN3
---------	-------------	------------	---------	---------	--------	-----	-------	-----

Performance metrics	SN_	_difference	is the	e most	importance	value
---------------------	-----	-------------	--------	--------	------------	-------

Net name	INT_Sig (V*ps)	INT_ISI (V*ps)	INT_XTK (V*ps)	SN_difference (V*ps) 6	SN_ratio
X_PCIEX1_2_TX_P	164.92	54.60	4.24	106.09	2.80318
X_PCIEX1_3_TX_P	164.87	55.30	5.05	104.53	2.73216
X_PCIEX1_0_TX_P	162.16	60.84	2.66	98.66	2.55389
X_PCIEX1_4_TX_P	164.37	68.95	0.59	94.83	2.36362
X_PCIEX1_1_TX_P	163.37	60.27	9.45	93.65	2.34312
X_PCIEX1_5_TX_P	162.62	71.33	0.48	90.82	2.26478

Using SRC for design that is "out of guideline":

- 1. Check the layout by checking electrical performance instead of layout rules.
- 2. Locate the weakest signal(s) and fix it/them.
- 3. Check if the next revision of board does have improvement.
- 4. Understand the risk of current design based on other project(s).
- 5. Perform quick "what-if" type analysis on an actual implementation.

Good reference design selection:

- 1. Current version of the design
- 2. An exiting working design

Abstract

- Overview
- ERC (Electrical Rule Check)
- SRC (Simulation Rule Check)
- Applications
- Summary

Applications

With easy setup and fast simulation, ERC enables practical first-order screening of electrical issues before handing off to SI experts for final check.

- ERC \rightarrow SRC \rightarrow Simulation:
- ✓ Use ERC to screen layout and identify the worst case for further SRC or SI analysis
- ✓ Use SRC to evaluate the SI impact of design rule violations and investigate tradeoffs
- SRC \rightarrow ERC:
- ✓ Use ERC to find out how to fix SI problems shown in SRC or SI simulations
- Compare ERC and SRC results with known-good reference design and the part of the design that has been fully analyzed.

Applications

General SI	Trace Impedance/	SI Performance	DDR Simulation	Time-domain PDN
Simulation	Coupling Check	Metrics Check		Simulation
Mainstream SI L1/L2 for fast sim Easy to setup; Sim runs fast Waveforms & measurements	Geometry based Trace impedance, coupling & reference check for entire board or net groups Results tables; Results plots; Layout overlay; Layout x-probing	Simulation based L1/L2 for fast sim L3 for non-ideal PDN Loss, reflection, xtalk check, typically by net groups Waveforms; Xtalk v_max & v_min	Layout-based DDR simulation L1/L2 for fast sim L3 for SSO No s-parameter model needed for on-board DRAMs Waveforms & measurements	Layout-based TD PDN sim PDN chip-pkg- board co-sim with -Voltus die mode - XcitePI IO model with die grid Voltage / current distributions; dynamic noise propagation

Potential power noise path check (Treat target power as signal and use SRC):

- → A 3-pin "Source" should be created at the source of the potential noise. Typically at the output of the Voltage Regulator Module (VRM) inductor.
- \rightarrow A 3-pin "Sink" should be created where the current will be consumed.
- \rightarrow These devices will be used as transmit and receive components in the Net Group setup page.

Abstract

- Overview
- ERC (Electrical Rule Check)
- SRC (Simulation Rule Check)
- Applications
- Summary

Summary

A → → Net Group:NGL/1,U0,U1,U2, → From //1 P → P → Net Group:NGL/1,U0,U1,U2, → From //1 P → Net Group:NGL/1,U0,U1,U2,U1,U2,U1,U2,U	ERC Electrical rule check	SRC Simulation rule check	Te component
	Trace Impedance/Coupling Check	SI Metrics Check	guiet
	Geometry-based	Simulation-based	$\underbrace{\text{All others quiet}}_{\underline{\downarrow}}$
Coupling overlay in	Micro, individual, segment-level view (coupling %, Ω & mm)	Macro, combined net-level, view (mv & ps)	/
	Options Check all nets Check selected nets Check nets in net groups	Options Level-1 simulation Level-2 simulation Level-3 simulation	EXT
	Results Coupling coefficient Impedance Trace reference	Results Waveforms: Tx / Rx / NEXT / FEX v_min & v_max	
	Summary & detailed tables Expanded & collapsed plots Layout overlay Layout cross probing HTML report	SI performance metrics HTML report	

Summary

- DRC's alone cannot validate the interconnects electrical characteristics.
- Examples: signals crossing split or different reference planes causing impedance changes.
- ERC: Segment-level view to shows why low performance happened and how to fix it .
- SRC: Net-level view to shows what happened and its effect on performance.
- ERC/SRC designed for use by the PCB layout designer, not the signal integrity (SI) expert.
- SI Expert can focus on other complex problems such as "stackup design", "design guide creation", "constraint setting", "risk assessment proposal", "design improvement", "suggestion/solution/explanation for customers".

– The possibility in catching something which might be missed in the traditional layout review is valuable, which may decrease the effort in the validation phase.

