AIC

Accelerate your Power Delivery Network Simulation Analysis

Nick Chiu July, 2016

> COMPANY FACTS

Established Date : May 3rd, 1996

Company Founder/ CEO: Michael Liang

HQ Address :

No. 152, Section 4th, Linghang N. Road , Dayuan District, Taoyuan city 337, Taiwan

AIC

COMPLETE PRODUCT LINES FOR VARIOUS MARKETS

Target Vertical Markets

Cloud Data Center Networking Security

Broadcasting

Industrial PC

Outline

- DC IR-drop Analysis Solutions
- Integrated DC Solutions
- Integrated AC Solutions
- Case Improved efficiency compared
- Summary

Outline

- DC IR-drop Analysis Solutions
- Integrated DC Solutions
- Integrated AC Solutions
- Case Improved efficiency compared
- Summary

DC IR-drop design flow

Initial DC analysis

Your DC analysis is correct in setup?

- Set up VRMs, Sinks device and sense pin.
- Relationship of voltage switch and interconnect.

Your DC analysis is correct in setup?

• Correct DC block diagram in simulation.

Re-simulation

Reuse PowerDC workspace feasibility?

www.aicipc.com

When complex Power Delivery Network Simulation Analysis...

- Complicated set of VRMs and Sinks.
- Power rail interconnections
- Correct DC analysis block diagram
- Reuse PowerDC workspace features

Spend the most time of DC analysis and correct simulation confirmed

Power Tree concept

• Describe on your PDN block diagram

What's Power Tree can help?

- Power Tree is a tool for early power estimation
- Power Tree is a visualization tool for the schematic data
- Power Tree is used to extract power topologies from net list
- Power Tree is used to help setting automation
- Power Tree is used to help setting reuse

Power Tree Based DC Auto Setup Flow

AIC Confidential, All specification and data a

Power Tree Generation

• "Launch Power Tree" in workflow

Single-Board/Package IR Drop Analysis	*
Workspace 📀	
Create New Single-Board Workspace	
Load Existing Single-Board Workspace	
Simulation Mode 📀	
✓ Enable IR Drop Analysis Mode	
Initial Setup	
Load a New/Different Layout	
Check Stackup	
Set up P/G Nets	
Optional: Import Board Temperature Map	
Power Tree Setup	
Launch Power Tree	
Apply Power Tree	
Component Model Setup	
Manage Libraries	
Launch Analysis Model Manager	
Assign Model	

- Pick the starting component pin
- Select through pins for through components if any

• Import netlist files

P	3		ð 🏊	6 0 '	"L" 🔛 🛛 R*	;	- P A	P
		New Power	r Tree om n entry HDL n entry HDL rectory (\s	'packaged' fok net list reports ratix_gx\work	der s (dialcnet.dat, (lib\stratix_gx\pa	dialpgnd.dat) ckaged	X Import Cancel	
ſ	Build P	ower Tree						×
	Gene	eral Settings			\sim			
	Categ	ory	Pa	ttern				
	Comp Filter Stop Ignor	onent Component Component ed Component	R* U*	;L*;Q*;M*;F* ;J*;P*				
-	Net Ignor GND I	ed Net Net	*E	N;*GATE;GND*				
	Ignore Star	e resistors with resistant t Component(s)	nce larger than:	100 (Ohms			
	Re	fDes		Pin	Voltage (V)	Net		
	¥*1			-				
-	F1. F1. F10 F10 F11	N16962158 +12V1 N16988673 .1 N16987919 .1 N16987919		Î				
e sub	F11 F12 F12 (F13 F13	1.2 +12V12 2.1 N16987681 2.2 +12V11 3.1 N16989404 3.2 +12V10		+		Con	tinue Cancel	•

Property Editing in Power Tree

- Double click a component to edit properties
 - Sink current/discrete comp resistance/sense pin

- Default settings for all others
 - Tools->Simulation Options...

Si	mulation Options		×	
	Simulation Options		_	
	✓ Use default SINK pin current (A):	1.0		
	Default DC target drop (%):	5.0		
	✓ Use default Resistance(Ohms):	0.01		
				_
		OK Cance		

DC IR-drop Analysis Solutions DC Analysis in Power Tree (Pre-simulation)

- Results will mark on the power tree
- Check discrete current

www.aicipc.com

• Check total current for VRM

+12V (12V)	10 J11 96A				
	56BM1 Pass (0%)				
	5 6 BM2 Pass (0%)				
	³ Fail: Q10 (0.0 ⁵⁶ N1698	8417 (1	1 Fail: F8 (0.05)2	+12∀16 (11.8	
	³ Fail: Q11 (0.0., ⁵⁶ N1698	8165 (1	1Fail: F9 (0.05)2	+12V15 (11.8	
	³ Fail: Q12 (0.0., ⁵⁶ N1698	8673 (1—•	1 Fail: F10 (0.02	—+12∀13 (11.8—	
	³ Fail: Q13 (0.0., ⁵⁶ N1698	7919 (1—•	1 Fail: F11 (0.0)2	-+12V12 (11.8	014 01.5A CN2012 Pass (
	³ Fail: Q14 (0.0., ⁵ 6 N1698	7681 (1	1 Fail: F12 (0.02	+12∀11 (11.8	
art simulation isabled SINK: "U15.1.9" RM and SINK are linked to the same net + RM and SINK are linked to the same net + mulation completed.	12V. The SINK will not be consider 12V. The SINK will not be consider —	red in the simulation red in the simulation	1		
tart simulation isabled SINK. "U15.1.9". RM and SINK are linked to the same net + imulation completed. ssc (0%) - SINK. "BM1 (5.6.7.8.9.10.11.12	12V. The SINK will not be consider 12V. The SINK will not be consider	red in the simulation red in the simulation	1		
art simulation isabled SINK: "U15.19". RM and SINK are linked to the same net + mulation completed. ass (0%): SINK: "BM1.(56789101112 ass (0%): SINK: "BM2.(56789101112 ass (1.2875): SINK: "DM2.(56789101112)	12V. The SINK will not be consider 12V. The SINK will not be consider	red in the simulation red in the simulation	1		
art simulation isabled SINK: "U15.1 9". RM and SINK are linked to the same net + mulation completed. ss (0%): SINK: "BML (5 6 7 8 9 10 11 1 ss (0%): SINK: "BML (5 6 7 8 9 10 11 1 ss (-1 2875%): SINK: "CN2015.(P14 P1 ss (-1 2875%): SINK: "CN2013.(P14 P1 ss (-1 2875%): SINK: "CN2013.(P14 P1 ss (-1 2875%): SINK: "CN2013.(P14 P1	12V. The SINK will not be consider 12V. The SINK will not be consider)" 5" 57" 57"	red in the simulatior red in the simulatior	1		
art simulation isobled SINK: "U15.1 9". RM and SINK are linked to the same net + mulation completed. iso (0%) SINK: "BML (5 6 7 8 9 10 11 12 iso (-1 2875%) SINK: "CN2015 (214 P1 iso (-1 2875%) SINK: "CN2012 (214 P1) iso (-1 2875\%) SINK: "CN2012 (214 P1)	12V. The SINK will not be consider 12V. The SINK will not be consider 9° 9° 5° 5° 5° 5° 5°	red in the simulation red in the simulation	1		
art simulation isobled SINK: "U15.1.9". RM and SINK are linked to the same net + Mu and SINK are linked to the same net + multion completed. so (0%): SINK: "BM1.(56789101112 ss(-12875%): SINK: "CN2015.(914 P1 ss(-12875%): SINK: "CN2016.(914 P1 ss(-12875%): SINK: "CN2016.(914 P1 ss(-12875%): SINK: "CN2016.(914 P1 ss(-12875%): SINK: "CN2016.(914 P1 ss(-12875%): SINK: "CN2006.(914 P1 ss(-12875%): SINK: "CN2008.(914 P1 ss(-12875%): SINK: "CN2008.(914 P1	12V. The SINK will not be consider 12V. The SINK will not be consider 22 50 50 50 50 50 50 50 50 50 50 50 50 50	ed in the simulation	1		
art simulation isabled SINK: "U15.1 9". RM and SINK are linked to the same net + mulation completed. ass (0%): SINK: "EM4. (5 6 7 8 9 10 11 11 ass (0%): SINK: "EM2. (5 6 7 8 9 10 11 11 ass (-1 2875%): SINK: "CN2016. (P14 P1 ass (-1 2875%): SINK: "CN2013. (P14 P1 ass (-1 2875%): SINK: "CN2010. (P14 P1 ass (-1 2875%): SINK: "CN2001. (P14 P1 ass (-1 2875%): SINK: "CN2009. (P14 P1 ass (-1 2875%): SINK: "CN2009. (P14 P1 ass (-1 2875%): SINK: "CN2000. (P14 P1 ass (-1 2875%): SINK: "CN2006. (P14 P1) ass (-1 2875%): SINK: "CN2006. (P14 P1) AND (P14	12V. The SINK will not be consider 12V. The SINK will not be consider)))))))))))))	red in the simulation	1		
art simulation isabled SINK. "U15.1 9". RM and SINK are linked to the same net + mulation completed. ss (0%) SINK: "BML (5 6 7 8 9 10 11 12 ss (0%) SINK: "BML (5 6 7 8 9 10 11 12 ss (-1 2875%) SINK: "CN2015, (P14 P1 ss (-1 2875%) SINK: "CN2015, (P14 P1 ss (-1 2875%) SINK: "CN2015, (P14 P1 ss (-1 2875%) SINK: "CN2011, (P14 P1 ss (-1 2875%) SINK: "CN2001, (P14 P1 ss (-1 2875%) SINK: "CN2000, (P14 P1 ss (-1 2875%) SINK: "CN2007, (P14	12V. The SINK will not be consider 12V. The SINK will not be consider)" 5)" 5)" 5)" 5)" 5)" 5)" 5)"	red in the simulation	1		
tart simulation. isobled SINK. "U15.1.9". "RM and SINK are linked to the same net + imulation completed. set (0%): SINK. "BM2 (5 6 7 8 9 10 11 12 set (0%): SINK. "BM2 (5 6 7 8 9 10 11 12 set (-1.2875%): SINK. "CN2015 (P14 P1 set (-1.2875%): SINK. "CN2015 (P14 P1 set (-1.2875%): SINK. "CN2015 (P14 P1 set (-1.2875%): SINK. "CN2012, (P14 P1 set (-1.2875%): SINK. "CN2000, (P14 P1 set (-1.2875%): SINK. "CN2001, (P14 P1 set (-1.2875%): SINK. "CN2003, (P14 P1 set (-1.2875%): SINK. "CN2002, (P14 P1 set (-1.2875%):	12V. The SINK will not be consider 12V. The SINK will not be consider)" 5" 5" 5" 5" 5" 5" 5" 5" 5" 5	ed in the simulation ed in the simulation	1		

Save/Load Power Tree Files

- Save a power tree file
 - Both properties and topologies are saved

• Load a power tree file

M Signity	2016 • Powertree • 20150401 •	+ 4 Search 2015047	
10 an angles		-1-4-11 manual manual	
Organize + New fol	der	1	• 🗖 🛛
🚖 Favorites 📑	Name	Date modified	Туре
E Desktop	pwt_docs	4/2/2015 11:35 AM	File folder
bownloads	_ 1.pwt	5/13/2015 11:19 AM	PWT File
📜 Recent Places	L13_updated.pwt	4/27/2015 4:30 PM	PWT File
	L132_L302.pwt	4/30/2015 1:47 PM	PWT File
🕞 Libraries 📲	Contraction of the second second		
Documents			
J Music			
Pictures			
Videos			
	1		
Computer			
Local Disk (C:)			
Ha Local Disk (D:)			
🖵 pdnap2_winshari _	× C	HI.	
Ele	oume .	Prover Tree Eler	(hun
100	names	Peres nest a	pmi)

Pass Power Tree Data to PowerDC

- Attach layout to PowerDC
 - Matching with the schematic (Power tree)
- "Apply PowerTree" in workflow
- Select proper ground nets
- After the assignment, check workspace

Power Tree Setup		>
Launch Power	Tree	
Apply Power T	ree	

Voltag	Voltage Drop Analysis Setup -> Set up Sinks								
	Sink Name	Model	Nominal Voltage (V)	Power/Ground Net	Upper Tolerance(+%)	Lower Tolerance(-%)	P/F Mode	Current (A)	Cui
\square	SINK_U30_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
$\mathbf{\nabla}$	SINK_U31_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
	SINK_U34_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
\square	SINK_U43_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
	SINK_U44_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
	SINK_U28_3_3V_R	Equal Current	3.3	3_3V_RS232_GND	5	5	Average	1	
\square	SINK_U33_3_3V_R	Equal Current	3.3	3_3V_RS232_GND	5	5	Average	1	
	SINK_U20_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
	SINK_U19_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	
\checkmark	SINK_U21_3_3V_GND	Equal Current	3.3	3_3V_GND	5	5	Average	1	

Compare Two Power Trees

www.aicipc.com

What Power Tree Will Do?

- Power topology extraction from schematic data in graphic diagrams
- Editing/creating properties in Power Tree
- Help to select/group proper power/ground nets analysis
- Circuit simulation in Power Tree
- Passing properties from PowerTree to PowerDC for settings reuse
- Saving/Loading Power Tree
- Comparing two Power Trees
- Auto net classification

Power Tree Accelerate

Using Power Tree acceleration

• In complex PDN for ten power rail simulation analysis

DC IR-drop analysis	Item	Not used	Using Power Tree	Features	
	Set up VRMs, Sinks, Discretes, Sense pin	60 min			
IR-drop analysis	Interconnections	10 min	30 min	Extract power topologies from netlist and circuit simulation (setting automation)	
	Check DC analysis block diagram	10 min			
Re-simulation	Reuse PowerDC workspace	20 min	10 min	Compare Two Power Trees	
		Redu Simu	ce half the lation corre	time costs 🖡 ctness 🕇 AIC	

www.aicipc.com

Outline

- Challenges for PCB Designers
- DC IR-drop Analysis Solutions
- Integrated DC Solutions
- Integrated AC Solutions
- Case Improved efficiency compared
- Summary

Innovative Solution for PCB Designers and PI

Engineers

Co-work with layout designer

- For typical enterprise customers, the DC design and analysis flow is as below
 - Communication and efficiency issue

Gap in layout modify

- After modified board file need to verification simulation.
- Modified board gap with the PI engineer suggestion.

Cross probing between layout design and analysis results

- Layout incremental update support
- Allegro layout change is dynamically updated to PDC-Lite
 - Update Selected Nets

www.aicipc.com

- Load a PowerDC report in PI Base
 - Check violations
 - Fix layout problems

DC Accelerate solutions

Outline

- Challenges for PCB Designers
- DC IR-drop Analysis Solutions
- Integrated DC Solutions
- Integrated AC Solutions
- Case Improved efficiency compared
- Summary

Integrated AC Solutions Decoupling capacitor optimization

www.aicipc.com

Integrated AC Solutions Decoupling capacitor optimization

www.aicipc.com

Integrated AC Solutions Decap Back-annotation

- Decap Optimization in OptimizePI
 - Simulation in OPI
 - Export scheme data

Decap Back-annotation

- Use the original brd file
- 💱 Place DeCaps from OptimizePI Place decaps Report File: D:/AE training/AE training 172/whatsnew/PIBase/database/Module3/Lab1/opi back annotation EMI/opi back annotation EMI Optimization EMIOptimizationD Browse.. Auto update Refdes PartNo Original PartNo Package Symbol LocXY Rotation Layer C18 CAP_NP0_0603_100P CAP NPO 0603 10N 0603RF WV 12D - BOTTOM (2502.49:1200.00) 0.00 Changed C36 CAP_NP0_0603_100P 0603RF_WV_12D - BOTTOM (3402.49:1500.00) 0.00 21503-260-12 Changed C_Grid_2_1_Bottom 1206 SMDCAP BOTTOM (1900.00:1611.51) 0.00 Added C_Grid_2_1_Top CAP_NP0_0603_100P 0603RF_WV_12D - TOP (1900.00:1611.51) 0.00 Added C Grid 2 2 laced. 1206 SMDCAP - BOTTOM (1900.00:521.51) 0.00 Added C Grid 3 1 CAP NPO 0603 100P 0603RF WV 12D TOP (3186.66:1611.51) 0.00 Added Analyze Tools Help Back Annotate DeCaps from OptimizePI. < _ DC Violation Markers... OK Cancel Place Help DC Report DC Analysis Batch Mode ... DC Analysis Interactive Mode ... 🙀 Back Annotate DeCaps from OptimizePI Decap Place... OptimizePI report file: Decap Placement Replication... D:/PI Base/opi back annotation/opi back annotation/opi back annotation Device Optimization Op Power Feasibility Editor... Browse ... SPEED2000... Name of design to be generated: PowerSL. D:/PI_Base/opi_back_annotation/opi_back_annotation/opi_back_annotation_Scheme1.brd 3D-EM... PowerDC... OptimizePI... Close Back Annotation Help

Outline

- Challenges for PCB Designers
- DC IR-drop Analysis Solutions
- Integrated DC Solutions
- Integrated AC Solutions
- Case Improved efficiency compared
- Summary

Case improved efficiency compared

• In complex PDN case for ten power rail simulation analysis

PDN analysis simulation	ltem	Before	Accelerate solution	
	Initial IR-drop analysis	80 min	30 min	
DC IR-drop analysis	Fix layout	Half day	10 min	
	Re-simulation	20 min	10 min	
AC decaps optimization analysis	Place decaps	20 min	10 min	

AIC Confidential. All specification and data are subject to change without notice.

www.aicipc.com

Outline

- DC IR-drop Analysis Solutions
- Integrated DC Solutions
- Integrated AC Solutions
- Case Improved efficiency compared
- Summary

Summary

- Accelerate DC analysis using Power Tree
 - Reduce nearly 50% time costs
 - Extract power topologies
 - setting automation
 - Increase simulation correctness
- Integrated Solutions

www.aicipc.com

- Reduce communication issues
- Reduce modify layout version
- Increasing the overall efficiency of the PDN design

Accelerate solution

Traditional design process

Thank you !

AIC Confidential. All specification and data are subject to change without notice.

AIC