

阻抗匹配與訊號偶合檢查

DRC/MRC/...?

- A bunch of design rules need to implement in your design
- To check and verify layout rules, to meet design requirements

About SI – Z0 and Xtalk

- Talk about impedance Z0, let's see the following case :
 - After simulation, you set the trace width to be 5 mil in the constraint system to achieve the impedance you want. Of course, the following picture will show no DRC violation. But if this is a 2-layers design and...

About SI – Z0 and Xtalk

• Talking about crosstalk, you probably follow the 3W rule – set the spacing between adjacent traces to 3 times the width of the trace as the following:

• The 3W rule may works well for the following structure:

About SI – Z0 and Xtalk

• But if the stack-up looks like the following, will 3W rule still works well?

The gap between DRC and SI performance

- The gap between layout designers and SI engineers is huge
 - Have different design expertise
 - Using different tools
 - Measured by different units

OrCAD Sigrity ERC/SRC Checking Flow

Why Electrical Rule Check

- ERCs are better than DRCs for 'signal quality' validation
 - Goes beyond MINIMUM-ACCEPTANCE, GEOMETRY-BASED constraint validation
- PCB designers identify and address first-order signal quality issues

OrCAD Sigrity ERC

 A comprehensive set of electrical signal quality checks for PCB enabling the PCB designer to make needed changes before more extensive and exhaustive analysis is performed

- Sigrity ERC is <u>individual</u>, <u>segment-level</u> view in <u>geometry domain</u> for PCB's SI performance with
 - Trace reference
 - Trace <u>reference-aware impedance</u>
 - Trace reference-aware coupling
 - Differential pair routing phase
 - # of vias and via locations,
 - Practical for board level check (setup, simulation, report)

- If you look close enough...
 <u>Two trace segments example</u>
 - Trace9047:
 one uniform impedance section
 - Trace9048:

4 impedance sections

erence

ERC – Trace coupling

Two trace segments example

- Trace9047 is one uniform impedance section
- Trace9047 broken into 5 sections based on trace coupling
 - two no coupling sections (1 & 5)
 - two 2-line coupling sections (2 & 4)
 - one 3-line coupling section (3)

ERC results						
Trace Name	Aggressor Trace Names	Coupling Coefficient (%)	Length (%)			
Trace9047::DQ0	-	- +1	1.82			
Trace9047::DQ0	Trace9024::DQ1	5.3 ← 2	1.46			
Trace9047::DQ0	Trace9024_Auto_190::DQ1	5.3 ←3	1.16			
	Trace8280::DQ4	0.6				
Trace9047::DQ0	Trace9024_Auto_191::DQ1	5.3 ← 4	4.10			
Trace9047::DO0	-	. ← 5	3.04			

- ERC Trace upper / lower layer reference <u>Two trace segments example</u>
 - Based on upper / lower layer references
 - Trace9047 \rightarrow one section
 - Trace9048 \rightarrow 5 sections

		ERC results	tracegolat	
Trace Name	Length (%)	Upper-lyr ref net name	Lower-lyr ref net name	
Trace9047::DO0	11.58	GND	VDD	
Trace9048::DQ0	12.74	GND	VDD	Note:
Trace9048::DQ0	1.78	VDD	VDD	there are 5
Trace9048::DQ0	0.11	-	VDD	impedance sections
Trace9048::DQ0	0.89	GND	VDD	impedance sections.
Trace9048::DQ0	1.66	GND	GND	
				Graser 📍

trace9048

Conference

Cross Probing

terence

• Auto-Zoom in board .

Tabular Results

Net count	Net name	No. of segments without	No. of trace reference discontinuities	No. of vias	Maximum Impedance (Ohm)	Minimum Impedance (Ohm)	Dominant Impedance (Ohm)	Dominant Imp Length (%)	Trace total length (mil)	Trace delay(ns)
			-							
1	P3E_SLOT2_TX_C_DN0	1	3	2	144.946	56.449	56.449	92.921	1633.158	0.233
2	P3E_SLOT2_TX_C_DN1	1	3	2	144.946	56.449	56.449	93.168	1583.722	0.225
3	P3E_SLOT2_TX_C_DN2	1	3	2	144.946	56.449	56.449	93.186	1575.168	0.224
4	P3E_SLOT2_TX_C_DN3	1	3	2	153.005	63.836	63.836	93.074	1549.678	0.220
5	P3E_SLOT2_TX_C_DN4	1	1	2	63.836	63.836	63.836	94.228	1513.121	0.214
6	P3E_SLOT2_TX_C_DP0	1	3	2	144.946	56.449	56.449	92.923	1633.643	0.233
7	P3E_SLOT2_TX_C_DP1	1	3	2	144.946	56.449	56.449	93.221	1583.404	0.225
8	P3E_SLOT2_TX_C_DP2	1	3	2	144.946	56.449	56.449	93.184	1574.865	0.224
9	P3E_SLOT2_TX_C_DP3	1	3	2	153.005	63.836	63.836	93.059	1546.528	0.219
10	P3E_SLOT2_TX_C_DP4	1	1	2	63.836	63.836	63.836	94.221	1511.225	0.214
11	P3E_SLOT3_TX_C_DN0	1	1	1	56.449	56.449	56.449	94.142	1490.958	0.211
	Croco moot?									0.208
	Closs moal?									0.217
	_				-		_			0.209
•	Anv trace sec	iment	mismato	ch?	Cross	; moať	?			0.225
	,									0.214
	Too much hro	akout	nock lo	nat	h2					0.203
	TOO MUCH DIE	anuul	HECK IEI	ngu	11 :					0.212
										0.212
•	Too much MS	S/SL ro	outing di	ffer	ence i	n a gro	up?			0.209
			5			5	1			0.217
	The come tra	oo lon	ath maa	nc	the co	ma tra	an dal	2		0.210
	The same ha		yın mea	115	ine sa	ine lia		ay:		0.225
										0.214
	Routing on M	S/SL I	nas diffe	ren	nt trace	delay				0.203
20		-		-				24102	11201010	0.212
								Co	ntoron	~~

JIIJEIEIK

Taipei

Trace Coupling Check

Cross probing helps to resolve issue intuitively

Trace Coupling Check

Net count	Net name	Aggressor net with max coupling	Max coupling coefficient	% length with max coupling	% length with coupling coef >0.05	% length with coupling coef 0.001~0.05	Total coupling index (mm-%)
1	P3E_SLOT2_TX_C_DP0-P3E_SLOT2_TX_C_DN0	P3E_SLOT2_TX_C_DP1	0.163%	40.183		40.183	2.605
2	P3E_SLOT2_TX_C_DP1-P3E_SLOT2_TX_C_DN1	P3E_SLOT2_TX_C_DP2	0.573%	1.132		43.513	2.941
3	P3E_SLOT2_TX_C_DP2-P3E_SLOT2_TX_C_DN2	P3E_SLOT2_TX_C_DN1	0.573%	1.138		34.387	2.668
4	P3E_SLOT2_TX_C_DP3-P3E_SLOT2_TX_C_DN3	P3E_SLOT2_TX_C_DN2	0,125%	36.798		15.328	2.177
5	P3E_SLOT2_TX_C_DP4-P3E_SLOT2_TX_C_DN4	P3E_SLOT2_TX_C_DN3		15.686		15.686	0.754
6	P3E_SLOT3_TX_C_DP0-P3E_SLOT3_TX_C_DN0	P3E_SLOT3_TX_C_DP1	0.156%	45.886		45.886	2.881
7	P3E_SLOT3_TX_C_DP1-P3E_SLOT3_TX_C_DN1	P3E_SLOT3_TX_C_DN0	0.147%	46.545		56.715	3.440
8	P3E_SLOT3_TX_C_DP2-P3E_SLOT3_TX_C_DN2	P3E_SLOT3_TX_C_DN1	0.156%	42.769		71.100	4.302
9	P3E SLOT3 TX C DP3-P3E SLOT3 TX C DN3	P3E SLOT3 TX C DN2	0.156%	55.397		60.345	3.541
10	P3E_SLOT3_TX_C_DP4-P3E_SLOT3_TX_C_DN4	P3E_SLOT3_TX_C_DP5	2.808%	26.979		68.281	47.643
11	P3E_SLOT3_TX_C_DP5-P3E_SLOT3_TX_C_DN5	P3E_SLOT3_TX_C_DN4	2.810%	28.293		71.503	54.733
12	P3E SLOT3 TX C DP6-P3E SLOT3 TX C DN6	P3E SLOT3 TX C DN5	2.810%	30.093		62.280	45.025
13	P3E_SLOT3_TX_C_DP7-P3E_SLOT3_TX_C_DN7						

Through this test, you will see,

- Tight coupling pairs
- Max coupling aggressor
- Dangerous vs. safe coupling
 → 18X (= 2.81% / 0.156%)

Trace Reference Check (Including co-planar)

- <u>Trace cross layer reference</u> shows the net names for the reference plane shapes directly above and below the corresponding trace segment
- <u>Trace coplanar reference</u> shows the net names for the reference plane shapes next to the corresponding trace segment on the same layer

OrCAD Sigrity ERC/SRC Checking Flow

- Sigrity SRC is <u>Macro</u>, <u>combined</u>, <u>net-level</u> view in <u>time-domain</u> of impact due to ERC violations measured in mv & ps (no device model needed)
 - Setup considering termination impedance, data rate (pulse width, rise/fall time), and amplitude
 - Results with Tx/Rx/NEXT/FEXT waveforms, SI performance metrics
 - Organized to easy SI performance interpretation along with ERC
- Practical for board level check (setup, simulation, report)

Time-domain waveforms <u>SRC - SI Metrics Check</u>

SRC Setup

- Device models are not needed
- Voltage pulse as stimulus, users can specify
 - Amplitude
 - Data rate (pulse width, rise/fall time) _
 - Tormination

								• Level-2 (Coupled lines with ideal PDN; plus trace, via xtalk effects)									
t up SI Metrics C	heck Wizar	d								O Level-	3 (Coupled	l lines with	n non-io	deal PDN; plu	is return pat	h and SSO effe	cts)
										O Level-	4 (3DFEM 1	model bas	ed; lac	k of referen	ce cases) Fr	om SPEED2	000
Set up Tx/Rx N	Iodels									Transien	t Time Ste	p (ps);			5		
	T_r - T_w-		+							Coupling Rise Time	ı (%): e (ps):				2		
	/ (T_peric	d 		/ v_h	igh	v_low ↓		→	Sim Time	:				2 OK	ns •	
Import	t Tx/Rx Mode	els]	Exp	ort Tx/Rx Mo	odels]				_	_	-			_	
Interface and ckt type	Tx_term R type	l(ohm)	C(F)	V_low(V)	V_high(V)	Tdelay(s)	T_r(s)	T_f(s)	T_w(s)	T_period(s)	Rx_term type	R(ohm)	C(F)	(S)Rx_term type	(S)R(ohm)	(S)C(F)	
NG1:SE	R 4	Ð	-	0	1	0p	100p	100p	525p	30n	R	40	-	R	5000	•	
NG1:Diff	R 4	ю	-	0	0.5	0p	100p	100p	525p	30n	R	40	-	R	5000	•	
													Ģ	raser Iser,		:	

Set up Simulation Option

Level-1 (Single lines with ideal PDN; delay, loss, reflection effects)

Conjeren

Taipei

X

Net name	INT_Sig (V*ps)	INT_ISI (V*ps)	INT_XTK (V*ps)	SN_difference (V*ps)	SN_ratio
DQ19	287.97	22.96	3.7	261.31	10.8029
DQ17	288.15	22.79	3.12	262.24	11.1223
DM2	286.52	24.21	3.04	259.28	10.5156
DQS2_P	206.59	104.05	0	102.54	1.98541
DQ20	286.71	23.94	3.14	259.63	10.5871
DQ21	288.2	22.68	5.43	260.09	10.2522
DQ16	286.51	24.21	0	262.3	11.834
DQ22	286.46	24.06	1.6	260.8	11.1639
DQ18	286.47	24.12	0	262.34	11.8752
DQ23	286.65	24.13	7.81	254.71	8.97519

← Ranking by SI Metrics

Net name	NEXT Vmax (mv)	NEXT Vmin (mv)	NEXT pk-2-pk (mv)	FEXT Vmax (mv)	FEXT Vmin (mv)	FEXT pk-2-pk (mv)	← Ranking by stalk levels
DM1	0	0	0	0	0	0	
DQ10	0	0	0	0	0	0	•
DQ11	0	0	0	0	0	0	
DQ9	19	-18	37	14	-15	29	
DQ12	17	-15	32	16	-16	32	
DQ8	2	-2	5	3	-3	6	
DQ14	0	0	0	0	0	0	
DQS1_P	0	0	0	0	0	0	
DQ15	17	-16	33	13	-13	27	
DQ13	19	-18	37	14	-14	29	Graser •

SRC Net-level View \rightarrow ERC's Segment-level View

Sigrity SRC

- Layout SI macro view at <u>net level</u>
- <u>All inclusive</u> end results
- Shows <u>what</u> happened and its <u>effect</u> on performance

Sigrity ERC

- Layout SI micro level view at segment level
- Individual segmented results
- Shows why low performance happened and how to fix it

Summary

- Sigrity ERC/SRC fills the gap between layout designers and SI engineers
 - Expanded expertise
 - Using same tools
 - Measured by same units

DRC Design Rule Check	ERC Electrical Rule Check	SRC Simulation Rule Check	Simulation Using Device Models
Layout/Board designe	r		SI engineer
Layout tools			Simulation tools
Geometry domain (mil/mm)			Electrical domain (mv, ps)
		G	aser

Conterence

PCB 製造之 DFM 解決方案

Topic

- 1. Review Design Flow
- 2. Review production issue from PCB manufacture & Assembly line.
- 3. What we have in Allegro PCB Designer?

What we need DFx Checker

Design for Assembly Check

erence

Allegro DFA Constraint

From Allegro[®] V16.5, the DFA check is standard feature in Allegro PCB Designer.

Allegro DFA Constraint

- Define DFA_Bound_Top/Bottom
- Define Correct area
- Classify DFA Class or add DFA_Bound_Top/Bottom, when you needed.

DFA_UPDATE	C Layers	s C Nets	Disable Custom Colors	: 🗌 Enat	Ы
Enter Sumhol File Name[s] (dra extension)		My Favorites	Subclasses	PkgGeo	1
C/Allegro Basic Lab/LIB/* dra		Display Stock He	All		
]		Stack-Up	Assembly_Bottom		
Enter Destination Directory			Assembly_Top		
		Non-Conduct	Body_Center		12.
		Areas	Dfa_Bound_Bottom		
DFA_DEV_CLASS property (optional)		Board Geometry	Dfa_Bound_Top		
		PackageGeometry	Display_Bottom		
		Embedded Geom	Display_Top		
		Components	Modules		
		Manufacturing	Pad_Stack_Name		
Update View Log Close Help		Drawing Format Analysia	Pastemask_Bottom		
		Anarysis	Pastemask_Top		

Define DFA Spreadsheet Editor & Rule

Edit / Constraint / DFA Constraint Spreadsheet

rerence

Define DFA Device Class

- Using DFA Update to classify DFA Class
- Edit Drawing property

DFA DRC Marker

DFA Clearance Control

Show Element
Class: DRC ERROR CLASS Subclass: PACKAGE_TOP Origin xy: (1164.50 2132.60) Constraint: Package to Package DFA Spacing Constraint Set: End To End Constraint Type: DESIGN Constraint value: 50 MIL Actual value: 39.4 MIL Element type: FILLED RECTANGLE Class: PACKAGE GEOMETRY Subclass: PLACE_BOUND_TOP RefDes: U18 xy-lower xy-upper Rectangle Top: (739.50 2093.20) (1164.50 2093.20) Rectangle Bottom: (739.50 1593.20) (1164.50 1593.20)
Height: 500.00 mils Width: 425.00 mils Area: 0.213 (sq in)

erence

The DFM Solution for PCB Manufacture

Why do we need to do DFM check?

- 1. Make sure manufacture date is correct and good for PCB manufacture.
- 2. Vision same as PCB Factory.
- 3. Identify problems early, reduce re-work probability.

Allegro PCB Manufacturing Option

16.6 S045 or later

terence

DFM Check Rules

Features

	Check Category	Data category
Etch	Logic	Netlist compare
	Graphic Check	Signal layer
		Power plane
Non-Etch	Graphic Check	Solder mask
		Silkscreen
		Paste mask
		NC data
Analysis	Statistics	Analysis Report

DFM Check Rules

Netlist Compare

- Import External Netlist, Extract CAM Netlist, Run Netlist Compare

Signal Layer

 Track to Track, Track to Pad, Pad to Pad, Pad to Drill, Minimum Track, Minimum Pad, Unplated Drills to Copper, Plated Drills to Copper, Copper to One-Up-Border, Redundant Pads, Plated Drills without Pads, Pads without Drills, Antennas, Minimum Gap, Minimum Width, Acid Traps, Copper Slivers, Pin Holes

Positive Plane

 Plated Drills to Copper, Unplated Drills to Copper, Pads to Drills, Acid Traps, Copper Slivers, Pin Holes, Minimum Gap, Minimum Width

Negative Plane

 Plated Drills to Copper, Unplated Drills to Copper, Pads to Drills, Copper to One-Up-Border, Isolated Thermal, Starved Thermal, Thermal Conflict, Tie Width

DFM Check Rules

Soldermask

- Pad to Mask, Drill to Mask, Mask Slivers, Soldermask Bridge, Pin Holes, Soldermask to Track, Missing Soldermask
- Silkscreen
 - Silkscreen to Soldermask, Minimum Soldermask Width
- NC Data Layer
 - Overlapping Hits, Coincidental Hits, Redundant Hits, Drill to Drill, Imploded Arcs, Imploded Path, Mill Tab Errors
- Pastemask
 - Pastemask on Through Holes, Missing Pastemask on SMD Pads, Missing Soldermask for Pastemask Pads, Pastemask to Copper clearance

Design Analyzer

 Design Analysis reporting, including User Parameter specifications, Calculated design analysis and customized output formatting.

Netlist Compare

/ly_Demo - Advanced Streams DFM		4
Property	Value	
E 🗹 Preprocess Optimization 0 - Optimization Preprocess		
🗉 📝 Netlist Compare 1 - Netlist Compare		Specific external Netlist
Name	Netlist Compare 1	file(IPC-D-356 format)
Actions	Import, Extract, Run	
🗆 Details		
🖃 📝 Import External Netlist		
File name		
Netlist type	IPC-D-356A	
🖃 📝 Extract CAM Netlist		
Allow CAM nets without pads		
Allow Single Point CAM net		り速律IPC-D-550或 IPC-D-
Treat Neg Planes as Single CAM net (no splits in Plane))	356A
🖃 🔽 Run Netlist Compare		
Ignore Extra External Nets at CAM Points		
Ignore Missing External Nets for CAM Nets		
🗄 💹 Signal Layer 2 - Signal Layer check		
🗄 📝 Negative Plane 3 - Negative Plane check		
Checks Constraints Areas Results		
		Grasor 📍

Constraint Region Check

🗲 Electrical			Line To										
+ Physical	Objects	Referenced	Line	Thru Pin	SMD Pin	Test Pin	Thru Via	BB Via	Test Via	Shape	Bond Finger	Hole	
Spacing T	ype S Name	spacing Cset	mil	mil	mil	mil	mil	mil	mil	mil	mil	mil	
🕀 🛅 Spacing Constraint Set 🔹 🖈	*	*	*	*	*	*	*	*	*	*	*	*	
🗄 🔚 Net 📃 🚺	n 🗖 demoL	DEFAULT	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	5.0000	8.0000	
Net Class-Class Rg	IN POWER-REGION	POWER NETS	8.0000	8.0000	6.0000	8.0000	8.0000	8.0000	10.0000	10.0000	5.0000	10.0000	
🖻 🖶 Region													
⊡													
E Line													
	K												
🖃 🗹 POWER-REGION_Outer_Electric	cal - Signal Layer check												
Name		POWER-	REGION	_Outer_E	lectrical								
Layers		[Outer El	ctrical]				17						
Drill Layers		[All NC]											
Checks		TT, TC, C	CC, TP, C	P, CPCP,	SMSM, V	/V,LV/	, THTH,	SMV, SN	4LV, SMI	TH, VTH,	, LVTH, DTH	IC, DT	
Shape/Size Filter													
NC Tool Filter													
Area		POWER-	REGION	_All_Elec	trical								
Auto Fix Errors													
🖃 Details													
Board Outline spacing													
🗆 Copper spacing (Different Net	ts)												
📝 TT - Track to Track		8.000000											
📝 TC - Track to Copper		10.00000	0 📕										
📝 CC - Copper to Copper		12.00000	0										
📝 TP – Track to Pad		10.00000	0										
📝 CP - Copper to Pad		10.00000	0										
🕀 Annular Ring													
							6	raco	r				
							Ŷ	lase					
							<u> </u>	iser,					
							C	_ont	eren	ce 🖌			

Results & Cross Probing

Summary

- Embedded Systems Design , Easy to Use.
- Cross Probing between Checker and Allegro® / OrCAD® PCB Designer

Confirm the correctness of the information before sending to your partner. Ensure smooth production.

New Exchange Format IPC-2581

- Generic Requirements for Printed Board
- Assembly Products Manufacturing Description Data and Transfer Methodology

New Exchange Format IPC-2581

Using IPC-2581 data format

- All artwork film record must be defined
- IPC-2581 Layer mapping must be defined

IPC-2581

CONSORTIUM

terence

Ravel Rule Checker

Does Traditional Design Rule Checker Enough?

Now You Can Self-development it .

A New DFM Rule Checker - Ravel Rule Check

Ravel Rule Checker

Ravel Rule Checker

RAVEL DRC Overview

Advantages

- Rapid development of custom DRC upon demand
- Reduced DRC implementation effort
 - RAVEL DRC language is specialized for expressing design rules in PCB and SiP
 - Does not require knowledge of SKILL or C/C++ programming languages
 - Does not require knowledge of Allegro® PCB/SiP database

-	_	
Effort	10 days	2 hours
Lines of code	1200	80
Case 1: 2 rules	C/C++	RAVEL

Case 2: 4 rules	SKILL	RAVEL
Lines of code	1540	470
Effort	15 days	3 days

- Reduced DRC maintenance effort
 - RAVEL rules are independent of database
 - RAVEL rules are independent of SPB software release
 - All dependencies are built into RAVEL DRC engine

