

Cadence Transistor-Level EMIR Solution

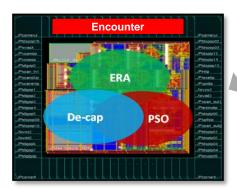
Voltus-Fi Custom Power Integrity Solution

Scott / Graser 16 / Oct / 2015

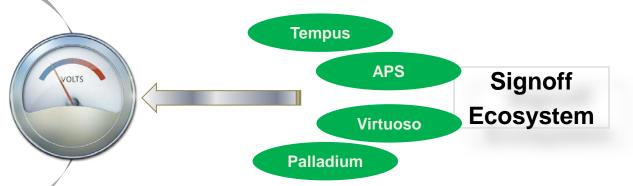
© 2015 Graser Technology Co., Ltd. All Rights Reserved.

Agenda

- Introduction -- Cadence Power Signoff Solution
- Transistor-Level EMIR Challenges and Cadence Advantages
- Visualization, Analysis & Debug
- Summary



Introduction – Cadence Power Signoff Solution


© 2015 Graser Technology Co.,Ltd.All Rights Reserved.

Voltus – Fast Design Closure

Complete Design Flow from Chip to System

- Tight Integration with IC Physical Implementation
 - Early rail analysis & ECO: during power planning stages
 - De-cap & ECO: IR-drop and leakage reduction
 - Power gate switching & ECO: rush current, turn-on time

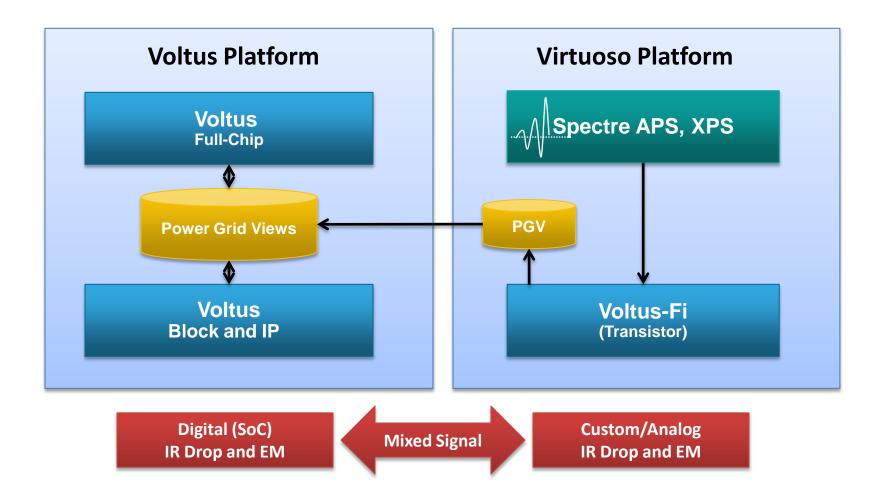

- Chip-package-PCB Co-Simulation and Analysis
 - Accurate power grid networks for chip and board
 - Electrical-Thermal analysis
 - 3DIC support, including CoWoS (2.5D)


Productivity Improvements in IC Design Closure and System Design

Voltus IC Power Integrity Solution

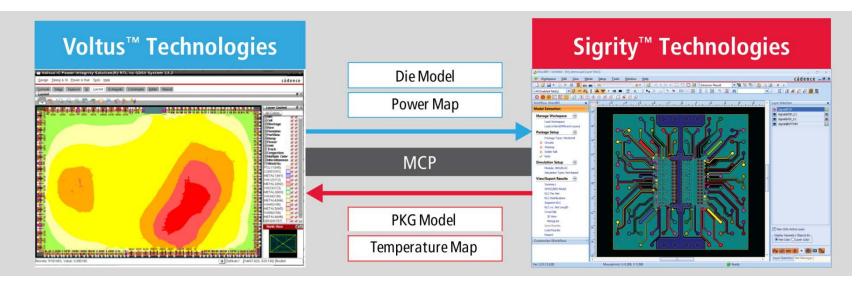
- Breakthrough massively parallel execution technology in SoC power signoff
- Up to 10X faster performance gain over existing solutions
- Capacity up to 1 billion instances with hierarchical analysis capability
- Integrated with key Cadence® technology for fast design signoff and closure
- Certified for TSMC 10nm FinFET+ process

Voltus-Fi Custom Power Integrity Solution


- Complete Cadence® IC power signoff platform in "Voltus™ + Voltus-Fi"
- TSMC 10nmFF+ certified, SPICE-accurate transistor-level power signoff
- Industry's only fully integrated solution in Virtuoso® platform for superior ease-of-use
- Seamless flow in Voltus-Fi to Voltus for accurate full-chip level SoC power signoff
- Tight integration with Cadence's tools for accuracy, performance, and fast design closure

Fastest path to accurate analog/mixed-signal power signoff

Voltus-Fi Custom Power Integrity Solution



Conference Graser

Accurate Transistor EMIR Analysis, High-quality Analog IP Grid Modeling

Voltus and Sigrity Chip-PKG-PCB Co-Analysis

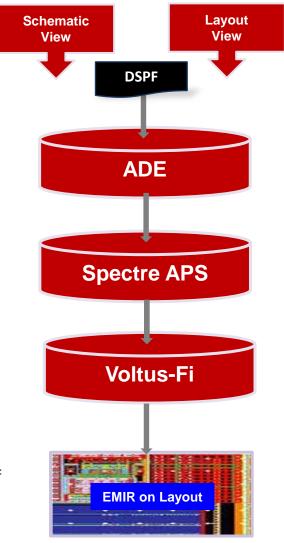
• Accurate Power Signoff for Highly Coupled Power Delivery Network

- Die-model and PKG / PCB-model in broadband SPICE format for "Voltus™ + Sigrity™" co-analysis
- Power map / temperature map for electro-thermal co-analysis
- Comprehensive power and signal integrity analysis including IO-SSO

Conference Graser

3D-IC technology, Multi-chip Modules, Single/Stacked-die in Package

Competitive Advantages


Cadence Offers a Complete Solution

- Layout and parasitic Extraction
- Transistor level EMIR Simulation
- EMIR Visualization, analysis, debug and fix
- An Integrated flow for high QoR
- Proprietary Technology in MMSIM Spectre APS|XPS EMIR Algorithm
 - Patented voltage-based "iterated" method in power network RC solving
- Comprehensive EMIR Result Analysis Capability in Voltus-Fi Flow
 - Foundry certification

User

- Quantus QRC: extraction accuracy
- APS: simulation accuracy
- Voltus-Fi: EM rules and IR-drop accuracy
- Integration with Virtuoso from ADE to VLS for greater design productivity
- PGV generation for full-chip level SoC Voltus power signoff

Cadence Voltus-Fi EMIR Flow

Transistor-level Electro-Migration & IR-Drop

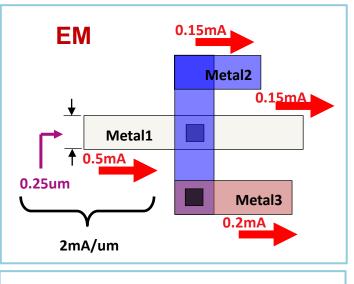
Challenges and Cadence Advantages

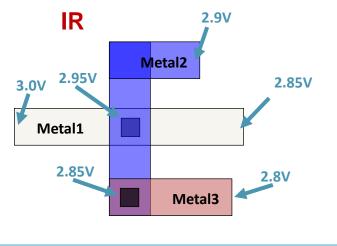
© 2015 Graser Technology Co., Ltd. All Rights Reserved.

Transistor-Level EMIR Analysis

• EM Analysis

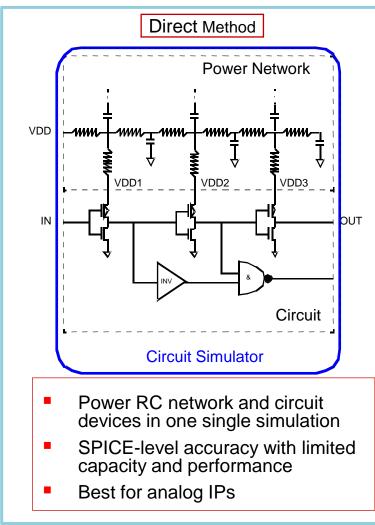
- High density current in a narrow metal wire may destroy the wire by electron migration
- An EM analysis solution calculates current and compares to EM rules on each wire
- Advanced nodes, especially on FinFET, have very complex EM rules such as wire length, width, current direction dependency

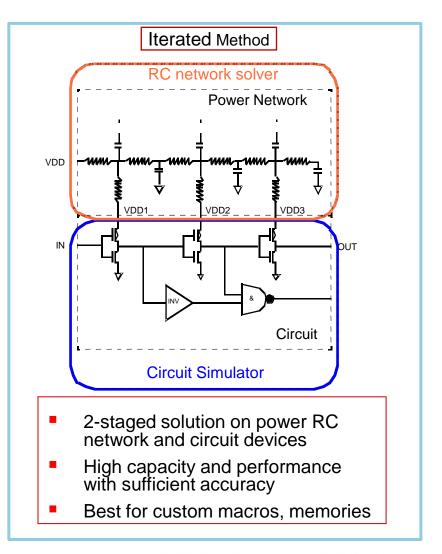

IR Analysis


User

- Voltage drop along the metal wire may cause signal integrity issue or even functional failure
- An IR analysis solution calculates voltage and ensures its sufficiency to meet specification

• Unique Challenges in Tx-level EMIR


- Simulation on large RC network from post-layout for "current" is very expensive
- Ease-of-Use for quick analysis, debug and fix on a familiar design GUI platform
- Unified power signoff: "cell + trx" for full-chip SoC



Solving Power Network RC Matrix

Direct and Iterated Method

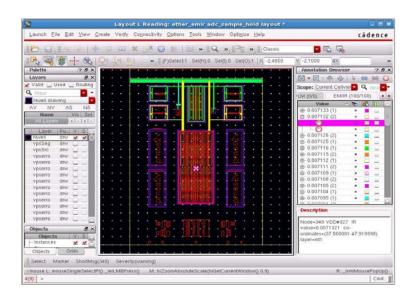
User Conference

Benchmark Examples

• Power Net EMIR and Signal EM Analysis

Statics		16Kx32-byte-data (90nm)	32K-SRAM (20nm)
Circuit Inventory	MOS	3,226K	~2,000K
	Diode	297	210
	R	25,240K	120M
	С	16,427K	85M
	Nodes	1,072K	605K
Transient Time		5ns	16ns
Simulator		APS	APS
Total Runtime		4h10m	7h36m
Peak Memory		97GB	120G

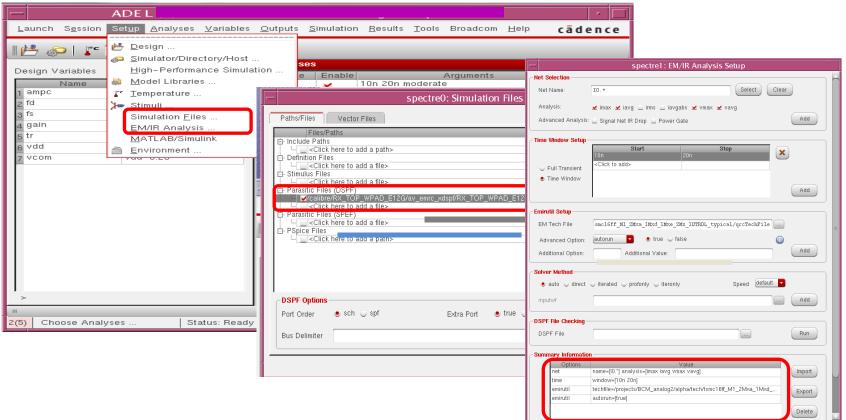
Visualization, Analysis & Debug


© 2015 Graser Technology Co., Ltd. All Rights Reserved.

Design Input Data Requirements

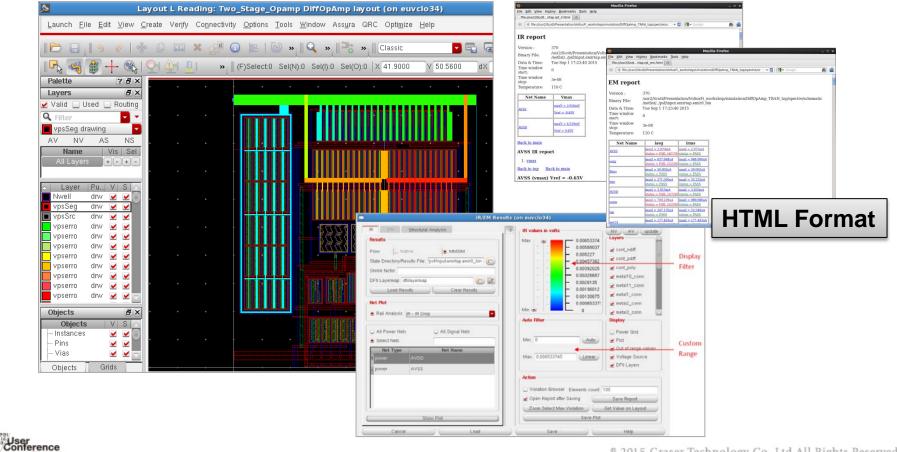
- Design Data
 - xDSPF of the design
 - Decoupled RC extracted for all nets, including PG nets
 - With physical information for layers
 - Testbench schematic or netlist
 - DFII schematic for Virtuoso® Analog Design Environment based simulation
 - DFII layout for results visualization and structural checks or GDSII of the design with layer map to pipe it in Virtuoso platform

• Technology Data


- SPICE models and corners
- DFII technology library
- ICT file or qrcTechFile with EM models

Setting Up Virtuoso-ADE for EMIR

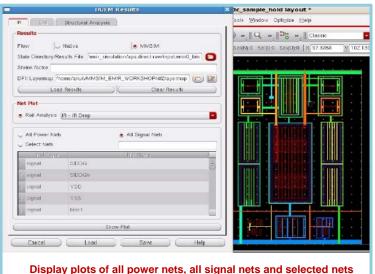
- Loading DSPF Netlist
- Specifying EMIR Analysis Options



Cancel (Apply) (Help

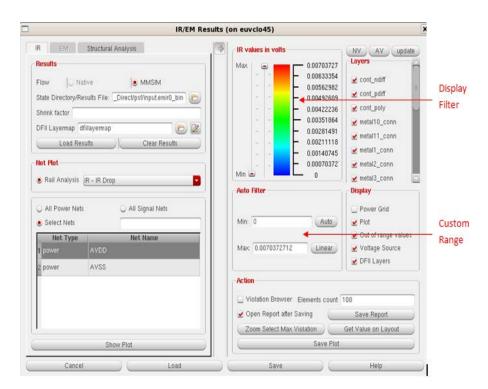
EMIR Result Analysis in Voltus-Fi

- Launching Voltus-Fi from Virtuoso Layout View
- Enabling Violations Browser for IR Violations and EM Violation
- Cross-probing between Graphic Display and Simulation Text Report

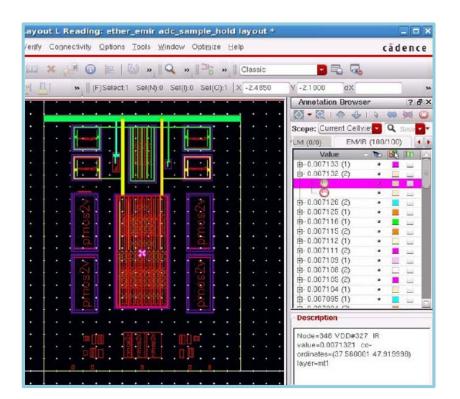

Voltus-Fi Visualization

- Usability and Integration
 - Fully integrated with ADE simulation environment and Virtuoso Layout Editor
 - Plots are overlaid real time over the layout
 - Continuous 100 color filter to improve usability
 - Leverages existing Annotation Browser as Violation Browser
 - Querying the worst violation and worst violation in an area
- Varied EMIR Plots & Detailed EMIR Reports
 - Signal net IR-drop plot
 - Power gating switch analysis plots
- Structural Analysis

User Conference


- Early detection of certain EMIR root cause
- Transistor-level Block's PGV Generation
 - For Voltus top-level power signoff analysis

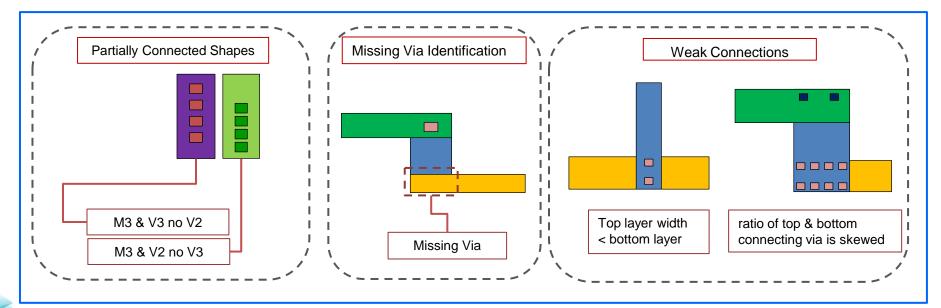
Ease-of-Setup and Rich Features


- The Continuous Filter has Sliders to change the Ranges
- Filters can be set from Fields as well
- The Display of the following can be easily toggled
 - DFII layers
 - Plots
 - Voltage sources
 - Out of range values
- User can also select the worst value in an area
- Layer Specific Results can also be displayed

Violation Browser

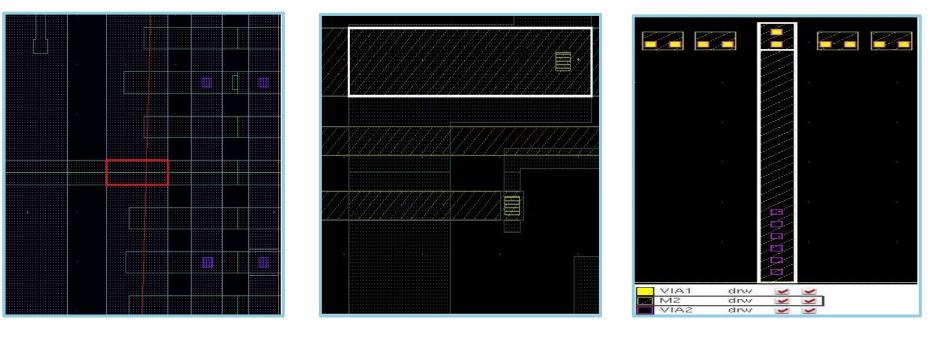
- Violation Browser, by default, lists Top 100 Violations
- User can use Browser to zoom into the selected Violation
- It is, by default, docked inside the Virtuoso Main Window but can be undocked as well
- It has all the features in Annotation Browser

Shape-Based Geometrical Analysis


• To Quickly Identify Power Grid Weakness Through Voltus-Fi Visualization

Structural Checks on Power Grid Nets

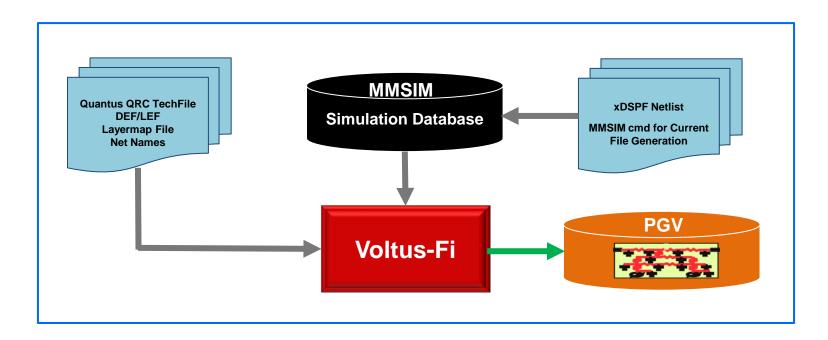
- Partially connected or unconnected shapes in layout patterns
 - Top VIA missing, Bottom VIA missing
- Overlapping layers


User Conference

- Missing VIA connections, VIA coverage ratio
- Weakly connected shapes
 - Skewed VIA ratio

Structural Analysis

• Example


Missing VIA

Via Coverage Ratio

Skewed VIA Ratio

Voltus-Fi on PGV Generation

- A Power-Grid-View (PGV) is a Binary Model for an IP's Grid Characteristic
 - Geometric views, port information
 - MMSIM setup for the current characterization of Power & Ground nets
 - Multi-mode feature in capturing various operational modes of an IP block
- An IP's PGV Should be Generated if a Significant Large P|G Nets are Shared Between Transistor-block and Cell-digital (Voltus)
 - Voltus top-level, full-chip power signoff

User Conference

Summary

© 2015 Graser Technology Co., Ltd. All Rights Reserved.

Summary

- Voltus is a complete solution in power integrity analysis and signoff
 - Voltus-Fi Custom Power Integrity Solution: Transistor-level power signoff
 - Voltus IC Power Integrity Solution: Cell-level SoC power signoff
- Voltus-Fi solution provides the most accurate transistorlevel solution that is fully integrated in the Virtuoso platform
 - Performance and accuracy by Spectre APS/XPS
 - Visualization, debugging, and fixing in Virtuoso platform

Voltus-Fi Custom Power Integrity Solution

Thanks

© 2015 Graser Technology Co., Ltd. All Rights Reserved.