#### Potential Power Delivery Network Issue In The Simple Structure Design

Cliff Lin 2015/10/08



#### Abstract

- Power integrity concept
- Why is DC analysis important?
- Rule of thumb in DC analysis
- Simple structure design case study
- Summary



#### **Power Integrity Concept**

What is best **DC** power plane performance?

- Devices see voltage closet to nominal voltage
  - ✓ Low IR drop
  - Well balanced DC voltages among devices on the same rail
- > Low Temperature Rise on Metal
  - Low Current Density
- Power Efficiency
  - Low Power Loss
- What is best AC power plane performance?
- Low noise
  - Low loop inductance

At ADLINK, We CARE

Low and Flat impedance





Obstacles: Power lines are not ideal and have finite resistance and inductance

- Resistive noise  $V_R = IR$ 
  - Caused by high transient currents drawn by the load
- Inductive noise  $V_L = L di/dt$ 
  - Caused by high current slew rates di/dt produced by the load





#### **Power Integrity Concept**

#### **Power Integrity Concept**

If the analysis result is fail, how's the impact?



To speed up the design procedure and reduce the frequency of modifying the PDS's geometry, we will frozen the PDS's geometry after the DC Analysis and simply modify the capacitor's size, number and location of capacitors, that is:

DC Analysis Change the geometry of the Power Distribution System AC Analysis AC Analysis Modify the location of capacitors



#### **Power Integrity Concept**



#### Abstract

- Power integrity concept
- Why is DC analysis important?
- Rule of thumb in DC analysis
- Simple structure design case study
- Summary











Swiss Cheese on solid plane

Dynamic trace routing can cut off the PDS

IR Drop is a system level problem - analysis of the entire power distribution system (PDS) is necessary to optimize the end-to-end voltage margins for every device on the distribution









CPU VRM Temperature measurements under system setup with water-cooler block and CPU running at 100% loading



#### Localize Heat in low power net



Excessive IR drop due to narrow and long traces





IC2

50mQ



TC1

2.4A flows into each via



1.032 V

1.021 V

1.011 V

1.001 V

990.7 mV

980.5 mV

970.2 mV

Vm 039

949.8 mV

939.5 mV

929.3 mV





-Temperature increases due to joule heating from current flowing through a conductor -Without electrical effect, thermal result is under-estimated

#### Electrical/Thermal Co-Simulation in One Integrated Tool



Integrated electrical/thermal co-simulation provides engineers with efficient design margins and lower manufacturing costs.





#### Abstract

- Power integrity concept
- Why is DC analysis important?
- Rule of thumb in DC analysis
- Simple structure design case study
- Summary





TECHNOLOG



TECHNOLOG



TECHNOLOGY

The numbers were extracted from IPC-2152, for 1mil plating thickness and no copper planes. If copper planes are present, then the temperature rise will be lower.

| Via size<br>(mil) | Current for<br><u>10°C</u> temp rise<br>(A) | Current for<br><u>30 ℃</u> temp rise<br>(A) | Current for<br><u>45 °C</u> temp rise<br>(A) |
|-------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
| 8                 | 1.2                                         | 2                                           | 2.3                                          |
| 10                | 1.4                                         | 2.3                                         | 2.8                                          |
| 12                | 1.6                                         | 2.6                                         | 3.2                                          |
| 16                | 1.8                                         | 3.1                                         | 3.8                                          |
| 20                | 2.1                                         | 3.6                                         | 4.3                                          |
| 30                | 2.7                                         | 4.6                                         | 5.7                                          |
| 40                | 3                                           | 5.5                                         | 6.8                                          |





Your constraint and actual current will be displayed in the Global Via Current tab of the Results table:

| Results and Report | -> Global \ | /ia Current (7 of 7 Fa | iled)          |                 |                       |                         |                      |                            |                        |                       |
|--------------------|-------------|------------------------|----------------|-----------------|-----------------------|-------------------------|----------------------|----------------------------|------------------------|-----------------------|
| Other Component V  | oltage Pow  | er Loss   Probes Meas  | surements Glob | oal Via Current | Global Via Current De | nsity   Specific Via Cu | rrent   Global Plane | Current Density   Specific | Plane Current Density  | Trace Current Density |
| Via Name           | Net         | PosX (mm)              | PosY (mm)      | StartLayer      | Upper Node            | EndLayer                | Lower Node           | PadStack                   | Maximum<br>Current (A) | Actual Current (A)    |
| Via14095::+        | +1.5V       | 274.32                 | 213.36         | Signal\$TOP     | Node96515::+          | Signal\$L1              | Node96516::+         | VIA-22-10HOLE              | 0.5                    | 1.2532                |
| Via14097::+        | +1.5V       | 274.32                 | 212.09         | Signal\$TOP     | Node96517::+          | Signal\$L1              | Node96518::+         | VIA-22-10HOLE              | 0.5                    | 0.715189              |
| Via14100::+        | +1.5V       | 273.05                 | 213.36         | Signal\$TOP     | Node96520::+          | Signal\$L1              | Node96521::+         | VIA-22-10HOLE              | 0.5                    | 1.96813               |
| Via14102::+        | +1.5V       | 273.05                 | 212.09         | Signal\$TOP     | Node96522::+          | Signal\$L1              | Node96523::+         | VIA-22-10HOLE              | 0.5                    | 1.26348               |
| Via38873::GND      | GND         | 272.415                | 215.773        | Signal\$TOP     | Node5037::GND         | Signal\$BOTT            | Node90269::GND       | VIA-22-10HOLE0             | 0.5                    | -0.832212             |
| Via38877::GND      | GND         | 273.685                | 214.757        | Signal\$TOP     | Node5036::GND         | Signal\$BOTT            | Node90285::GND       | VIA-22-10HOLE0             | 0.5                    | -0.825979             |
| Via38878::GND      | GND         | 272.415                | 214.757        | Signal\$TOP     | Node5035::GND         | Signal\$BOTT            | Node90289::GND       | VIA-22-10HOLE0             | 0.5                    | -2.56298              |



#### Abstract

- Power integrity concept
- Why is DC analysis important?
- Rule of thumb in DC analysis
- Simple structure design case study
- Summary





| 1         | Charlett            |                  |                |          |                   |                     |                 | ſ                      |       |                |               |           |        |       |        |          |                |
|-----------|---------------------|------------------|----------------|----------|-------------------|---------------------|-----------------|------------------------|-------|----------------|---------------|-----------|--------|-------|--------|----------|----------------|
| Layer Ma  | nager -> Stack U    | p                |                |          |                   |                     |                 | Layer Manager ->       | Pad S | itack (C62D44) |               |           |        |       |        |          | □ ×            |
| Stack Up  | Pad Stack           |                  |                |          |                   |                     |                 | Stack Up Pad Stac      | k     |                |               |           |        |       |        |          |                |
| Layer #   | Color Layer Icon    | Layer Name       | Thickness(mil) | Material | Conductivity(S/m) | Fill-in Dielectric  | Er Loss Tangent | PadStacks              |       | Xsection View  | Layer         | PadTyp    | Shape  | Width | Height | OffsetX  |                |
|           |                     | Medium\$medium40 | 0.7            | FR4      | 0                 |                     |                 | ~DefaultPadStack       |       |                |               |           |        |       |        |          |                |
| 1         |                     | Signal\$TOP      | 2.3            | copper   |                   | FR4                 |                 | C40_FM_80              | =     |                | D DefaultLibL | Regu      | Circle | 62    | 62     |          |                |
|           |                     | Medium\$medium42 | 6.5            | FR4      | 0                 |                     |                 | C62D44                 |       |                |               | Anti      | Circle | 74    | 74     |          |                |
| 2         |                     | Signal\$L2_GND   | 2.4            | copper   |                   | FR4                 |                 | C90D72                 |       |                |               | Ther      |        |       |        |          |                |
|           |                     | Medium\$medium44 | 11.8           | FR4      | 0                 |                     |                 | C295D142               |       |                | Signal\$TOP   | Regu      | Circle | 62    | 62     |          | -              |
| 3         |                     | Signal\$L3_PWR   | 2.4            | copper   |                   | FR4                 |                 | RECT24X61              | =     |                | III           |           |        |       |        | •        |                |
|           |                     | Medium\$medium46 | 9.5            | FR4      | 0                 | CD4                 |                 | RECT32X35              |       |                |               | -         |        | 1.00  |        |          |                |
| 4         |                     | Signal\$L4_PVVR  | 2.4            | Copper   | 0                 | FK4                 |                 | RECT47X71              |       | 44             | Outer diam    | neter: 44 |        |       | mil    |          |                |
| 5         |                     | Signal¢I 5_CND   | 2.4            | Conner   | U                 | ER4                 |                 | RECT65X50              | _     |                | Disting thick | 1         |        | _     | mil    |          |                |
| 5         |                     | Medium\$medium50 | 6.5            | ER4      | 0                 |                     |                 | Current default nad s  | tack. |                | Plaung thick  | ness: 1   |        |       | m      |          |                |
| 6         |                     |                  | 2.3            | copper   | •                 | FR4                 |                 | ~DefaultPadStac        | k     |                | Conduc        | tivity:   |        |       | S/m    | Use defa | ault conductiv |
| -         |                     | Medium\$medium52 | 0.7            | FR4      | 0                 |                     |                 |                        |       |                | Soloct mat    | orial:    |        |       |        |          |                |
|           |                     |                  |                |          |                   |                     |                 | Set As Default         |       |                | Select mat    | cop       | iper   |       |        |          |                |
|           |                     | 111              |                |          |                   |                     |                 | New Del                | oto   |                |               |           |        |       |        |          |                |
| Total Thi | cknocc: 6 1700o+001 | mil              |                |          | r                 | Viou Matorial       | Import          | Den                    | ete   |                |               |           |        |       |        |          |                |
| Total Thi | LKNESS, 0,17000+001 |                  |                | C        |                   | view material       | Import          | -Global Plating Thickn | ess   |                |               |           |        |       |        |          |                |
|           |                     |                  |                |          | Export Auto S     | Set Layer Special V | oid Filter      |                        | -     |                |               |           |        |       |        |          |                |
|           |                     |                  |                | Unit: m  | і 🔻 ОК            | Cancel              | Apply           |                        |       | L              | Unit:         | mil 👻     | ок     |       | Cancel |          | Apply          |

Set the plating thickness is important for IR drop analysis.

Set the material is important for thermal analysis.



|                                        | Volta                   | age Drop Analysis Se   | etup -> Set up Si                  | nks                    |                   |                        |                        |           |             |
|----------------------------------------|-------------------------|------------------------|------------------------------------|------------------------|-------------------|------------------------|------------------------|-----------|-------------|
|                                        | Assi                    | gn Tolerance %         | -                                  |                        |                   |                        |                        |           |             |
| Single-Board/Package E/T Co-Simulation |                         | Sink Name              | Model                              | Nominal Voltage<br>(V) | Power/Ground Net  | Upper<br>Tolerance(+%) | Lower<br>Tolerance(-%) | P/F Mode  | Current (A) |
| Workspace                              |                         | SINK_CN3_P12V_GND      | Equal Current                      | 12                     | P12V_GND          | 1                      | 1                      | Worst     | 105         |
|                                        |                         | SINK_CN2_P12V_GND      | Equal Current                      | 12                     | P12V_GND          | 1                      | 1                      | Worst     | 105         |
| Simulation Mode                        |                         |                        |                                    |                        |                   |                        |                        |           |             |
| Initial Setup                          | $\overline{\mathbf{v}}$ | Equal Cu               | ırrent                             |                        |                   |                        |                        |           |             |
| Analysis Setup                         |                         | If the moo<br>the same | lel is selected,<br>pin of a SINK. | equal current          | s will flow throu | gh all the layc        | out nodes co           | nnected v | vith        |
| Electrical                             | $\bigcirc$              | Actual Vo              | oltage                             |                        |                   |                        |                        |           |             |
| Set up VRMs<br>Set up Sinks            |                         | For Equal              | and Unequal                        | Current mode           | l, a voltage valu | e is computed          | d for each lay         | yout node | •           |

Layout nodes connected with the same pin may have different voltages. The Actual Voltage of the SINK is calculated based on Pass/Fail(P/F) mode.

| Constraints Setup  | Volt | age Drop Anal | ysis S | etup -> Set up Si | inks            |                  |               |               |            |             |
|--------------------|------|---------------|--------|-------------------|-----------------|------------------|---------------|---------------|------------|-------------|
| Cinculation.       | Assi | ign Tolerance | %      | -                 |                 |                  |               |               |            |             |
| Simulation         |      | Sink Name     |        | Model             | Nominal Voltage | Power/Ground Net | Upper         | Lower         | P/F Mode   | Current (A) |
| Results and Report |      |               |        |                   | (V)             |                  | Tolerance(+%) | Tolerance(-%) |            |             |
| Results and Report | 🗹    | SINK_CN3_P12  | _GND   | Equal Voltage     | 12              | P12V_GND         | 1             | 1             | Not In Use | 105         |
|                    |      | SINK_CN2_P12  | _GND   | Equal Voltage     | 12              | P12V_GND         | 1             | 1             | Not In Use | 105         |
|                    |      | )             |        |                   |                 |                  |               |               |            | 1           |



At ADLINK, We CARE

Set up Discretes

Thermal

Set up Ref Node, etc.

V

| ingle-Board/Pac  | kage E/T Co-Simulation |                         | \$ |
|------------------|------------------------|-------------------------|----|
| Workspace        |                        | $\overline{\mathbf{v}}$ |    |
| Simulation Mod   | e                      | $\overline{\mathbf{v}}$ |    |
| Initial Setup    |                        | $\odot$                 |    |
| Analysis Setup   |                        |                         |    |
| Electrical       |                        | $\overline{\mathbf{v}}$ |    |
| Thermal          |                        |                         |    |
| Set up Ar        | nbient Temperature     |                         |    |
| Set up Ar        | mbient Conditions      |                         |    |
| Select Th        | ermal Components       |                         |    |
| Set up PC        | B Components           |                         |    |
| Set up PK        | (G-Die                 |                         |    |
| Set up PK        | G-BGA                  |                         |    |
| Define Ex        | ternal Heat Sink       |                         |    |
| Optional:        | Add Thermal Test Board |                         |    |
| Constraints Setu | p                      | $\overline{\mathbf{v}}$ |    |
| Simulation       |                        | $\overline{\mathbf{v}}$ |    |
| Results and Repo | ort                    | $\odot$                 |    |

By default, PowerDC will generate effective heat transfer coefficients (convection + radiation) based on ambient conditions and board orientation.

Objective: Setup ambient air flow and board orientation.

- Explanation: Ambient air flows and board orientation will affect heat transfer.
- Procedure: Fill the menu (see blow).

| le 🙆                                    |                                                                                         |                           |                                           |                          |               |
|-----------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|--------------------------|---------------|
| General<br>File Manager<br>Save Options | Change the 'Thermal Ana                                                                 | lysis' options in         | PowerDC                                   |                          |               |
| Hotkeys                                 | Ambient air flow                                                                        |                           |                                           |                          |               |
| Grid and Unit                           | Air flow: 2 m/s                                                                         | Calculator                |                                           |                          |               |
| Processing                              | Location-Dependent Ambient Air How                                                      |                           |                                           |                          |               |
| Trace<br>Error Checking                 | PCB top: O Yalue 0                                                                      | m/s                       | Calculate                                 | 1                        | ×             |
| 3D Layout View 🕜                        | PCB bottom: O Value 0                                                                   | m/s C                     |                                           |                          |               |
| Display                                 |                                                                                         | 1410                      | Fan Diameter:                             |                          | mm            |
| Quarty<br>Rimulation (Basic)            | Board orientation                                                                       |                           | -                                         |                          | i             |
| Automation Result Savinos               | Horizontal O Vertical                                                                   |                           | Fan Flow Rate:                            |                          | CFM(ft^3/min) |
| Simulation (Advanced) 🙆                 |                                                                                         |                           |                                           |                          |               |
| Set Ambient Temperature                 | User defined heat transfer coefficie                                                    | nts                       |                                           | Cano                     | 9             |
| Treat Pad As Shape<br>Report<br>Mesh    | By default, PowerDC will generate effectiv<br>ambient conditions and board orientation. | e heat transfer coefficie | nts (convection + radiation)<br>A calcula | based on<br>tor based of | n fan         |
| mermal Analysis                         | PCB top: O Value 0                                                                      | (W/m^2-C)                 | odiameter                                 | and flow ca              | apacity       |
| Thermal Constraints<br>Special Handling | PCB bottom: O Value                                                                     | (W/m^2-C)                 | Ofile                                     | Browse                   |               |
|                                         | Package (Component) top: 0                                                              | (W/m^2-C)                 |                                           |                          |               |
|                                         | Package (Component) side:                                                               | (W/m^2-C)                 |                                           |                          |               |
|                                         |                                                                                         |                           |                                           |                          |               |
|                                         |                                                                                         | Default                   | Apply                                     | OK Cancel                |               |
|                                         |                                                                                         |                           |                                           | 11 IS                    |               |

























#### Abstract

- Power integrity concept
- Why is DC analysis important?
- Rule of thumb in DC analysis
- Simple structure design case study
- Summary



# Summary

1. The following DC analyses are described as necessary verification items. Missing one or more analyses may degrade the system performance and lead to the product failure.

- (a) Actual DC voltages at devices with thermal effect
- (b) Current density and temperature on metal
- (c) Current carrying capability of interconnect
- (d) Power and ground pin effectiveness



#### Thanks for your attention~



