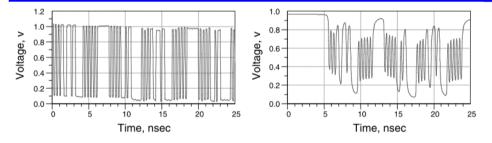
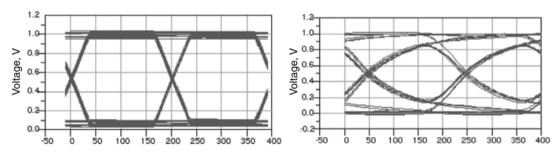
High Speed Serdes Signal Design Analysis with CTLE

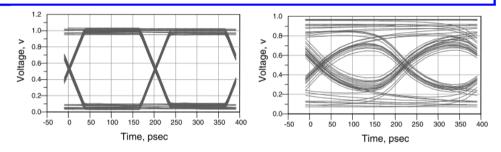
Cliff Lin 2015/10/15


Abstract

- Source of Signal Loss
- Pre-emphasis and Equalization
- USB 3.0 transmitter compliance test considerations
- USB 3.0 transmitter channel design case study
- Summary



Source of Signal Loss


The important consequence of frequency-dependent loss and rise-time degradation is ISI: The precise waveform of the bit pattern will depend on the previous bits that have passed by. ISI is a significant contributor to jitter.

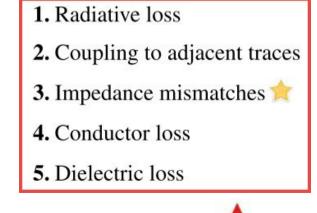
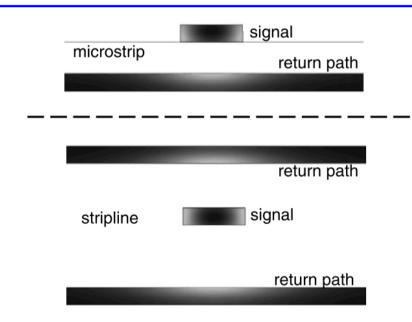

Figure 9-3 5-Gbps pseudorandom bit stream. Left: bit pattern when the rise time is much shorter than the bit period. Right: bit pattern when the rise time is comparable to the bit pattern, causing pattern-dependent voltage levels or intersymbol interference.

Figure 9-5 Eye diagrams of a 5-Gbps pseudorandom bit stream. Left: little loss. Right: same bit pattern still with no loss, but a 4-pF capacitive discontinuity from four through-hole vias.


Figure 9-4 Eye diagrams of a 5-Gbps pseudorandom bit stream. Left: little loss. Right: same bit pattern when there is a lot of loss, showing the collapse of the eye diagram, and increased jitter, indicated by the widening of the cross-over regions.

Source of Signal Loss

It is important to note that the resistivity of copper, and most conductors, is very constant with frequency. Above about 10 MHz, the resistance per length of the signal path will be frequency dependent. Skin depth is driven by the need for the currents to take the path of the lowest impedance, which is dominated by the loop inductance at higher frequencies.

Figure 9-6 Current distribution in 1-ounce copper, for near 50-Ohm lines, at 10 MHz, showing onset of current redistribution due to skin-depth effects. Top: microstrip. Bottom: stripline. The lighter the color, the higher the current density. Simulated with Ansoft's 2D Extractor.

At ADLINK, We CARE

$$R = \rho \frac{Len}{w \times \delta}$$

where:

R = the resistance of the line, in Ohms

 ρ = the bulk resistivity of the conductor, in Ohm-inches

Len = the length of the line, in inches

w = the line width, in inches

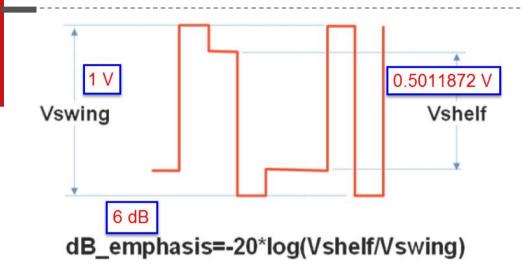
 δ = the skin depth of the conductor, in inches

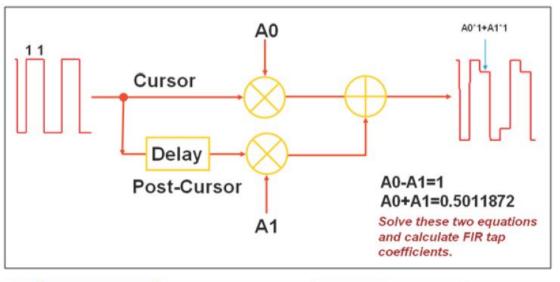
Source of Signal Loss

The dissipation factor, usually written as the tangent of the loss angle, $tan(\delta)$, and also abbreviated sometimes as Df, is a measure of the number of dipoles in the material and how far each of them can rotate in the applied field.

The ratio of the powers, in dB, is:

$$r_{dB} = 10 \times \log\left(\frac{P_{1}}{P_{0}}\right) = 10 \times \log\left(\frac{V_{1}}{V_{0}^{2}}\right) = 10 \times 2\log\left(\frac{V_{1}}{V_{0}}\right) = 20\log\left(\frac{V_{1}}{V_{0}}\right)$$
(9-52)


Voltage Ratio	Power Ratio	dB
100	10,000	40
10	100	20
2	4	6
1.4	2	3
1	1	0
0.7	0.5	-3
0.5	0.25	-6
0.1	0.01	-20
0.01	0.0001	-40



Abstract

- Source of Signal Loss
- Pre-emphasis and Equalization
- USB 3.0 transmitter compliance test considerations
- USB 3.0 transmitter channel design case study
- Summary

At ADLINK, We CARE

A de-emphasized waveform is defined in terms of the voltage levels called Vshelf and Vswing.

Vshelf is calculated first for a given level of de-emphasis.

Each unique channel has some optimum amount of transmitter de-emphasis that will deliver the best eye performance.

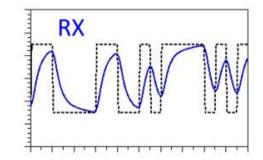
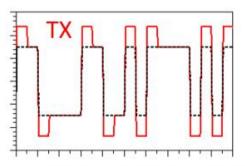



Figure 1. High frequency loss results in signal deterioration at RX

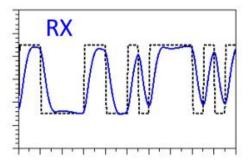
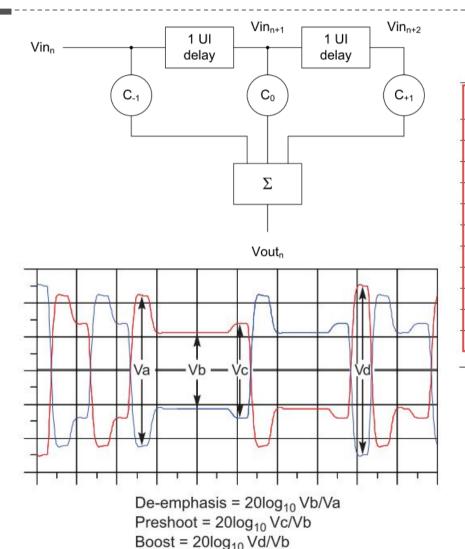
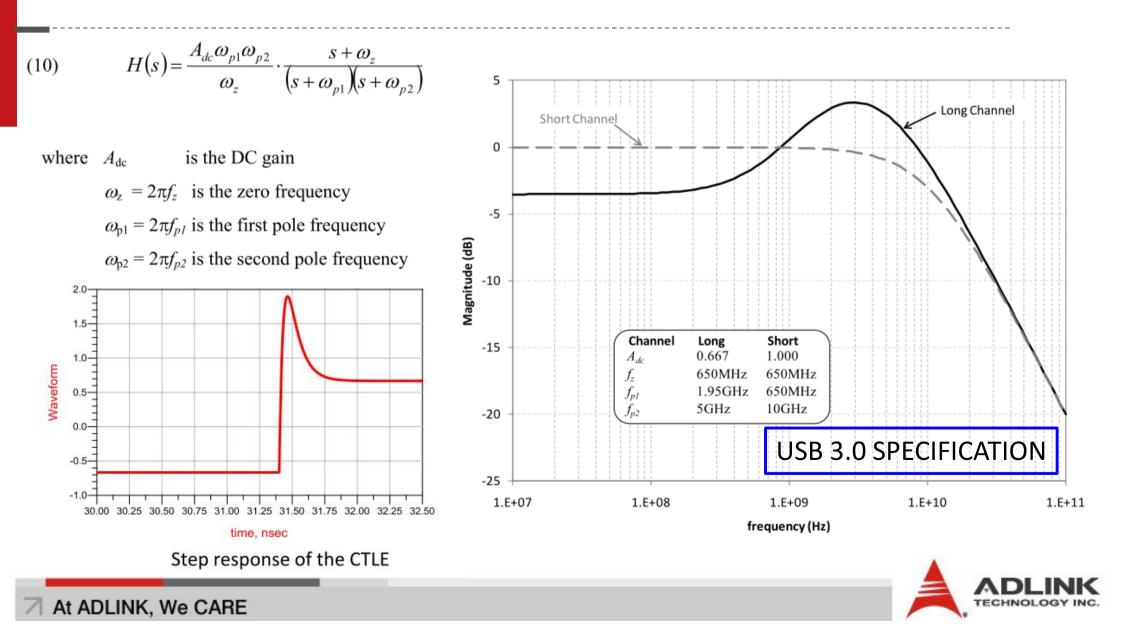
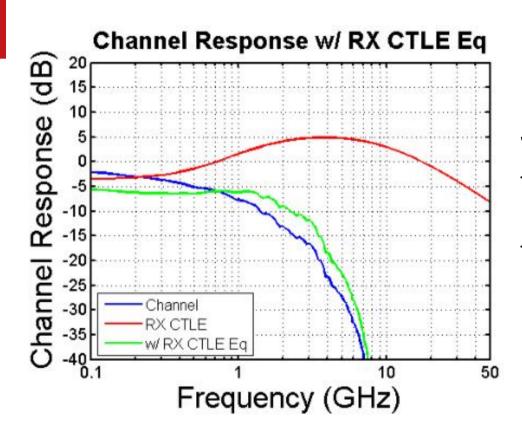


Figure 2. High frequency compensation with pre-emphasis

Cursor tap1 = (1+ Vshelf) / 2

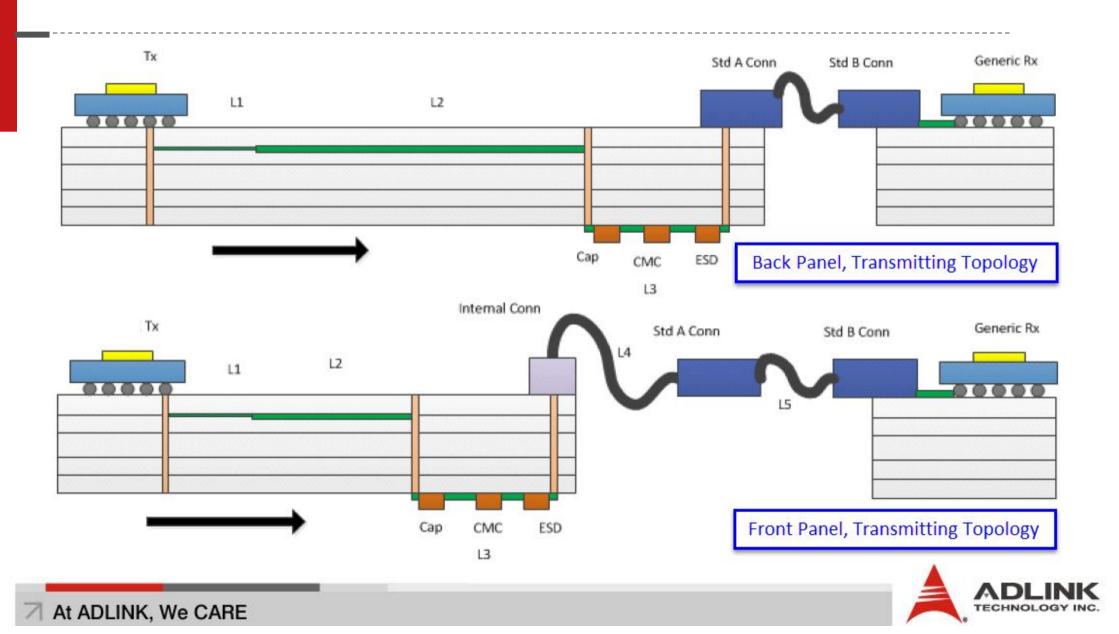
Post cursor tap2 = tap1 - 1


Table 4-16: Tx Preset Ratios and Corresponding Coefficient Values

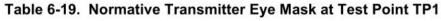
Preset Number	Preshoot (dB)	De-emphasis (dB)	C.1	C ₊₁	Va/Vd	Vb/Vd	Vc/Vd
P4	0.0	0.0	0.000	0.000	1.000	1.000	1.000
P1	0.0	-3.5 ± 1 dB	0.000	-0.167	1.000	0.668	0.668
P0	0.0	-6.0 ± 1.5 dB	0.000	-0.250	1.000	0.500	0.500
P9	3.5 ± 1 dB	0.0	-0.166	0.000	0.668	0.668	1.000
P8	3.5 ± 1 dB	-3.5 ± 1 dB	-0.125	-0.125	0.750	0.500	0.750
P7	3.5 ± 1 dB	-6.0 ± 1.5 dB	-0.100	-0.200	0.800	0.400	0.600
P5	1.9 ± 1 dB	0.0	-0.100	0.000	0.800	0.800	1.000
P6	2.5 ± 1 dB	0.0	-0.125	0.000	0.750	0.750	1.000
P3	0.0	-2.5 ± 1 dB	0.000	-0.125	1.000	0.750	0.750
P2	0.0	-4.4 ± 1.5 dB	0.000	-0.200	1.000	0.600	0.600
P10	0.0	See Note 2.	0.000	See Note 2.	1.000	See Note 2.	See Note 2.

PCI EXPRESS BASE SPECIFICATION, REV. 3.0


When a high speed digital signal propagates through a lossy channel, RX CTLE is used to boost high frequency components of the signal to compensate high frequency channel loss.

Abstract

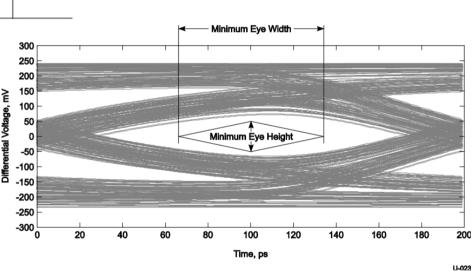
- Source of Signal Loss
- Pre-emphasis and Equalization
- USB 3.0 transmitter compliance test considerations
- USB 3.0 transmitter channel design case study
- Summary



DUT

U-026

Cable


	5GT/s			10GT/s				
Signal Characteristic	Minimum	Nominal	Maximum	Minimum	Nominal	Maximu m	Unit s	Note
Eye Height	100		1200	70		1200	mV	
Dj			0.43			0.530	UI	300
Rj			0.23			0.184	UI	250 - 200 -
Tj		1	0.66			0.714	UI ≧	150
4. The eye heig	ght is to be mea	asured at the n	nd cables at TP ninimum openin 69 times the RN	g over the rang	ge from the ce		Differential Voltage,	-100 - -150 - -200 - -250 -
The complianc (TP1), and the reference equa	Tx specifica	ations are ap	oplied after p	rocessing the next section	e measured	data with		-3000

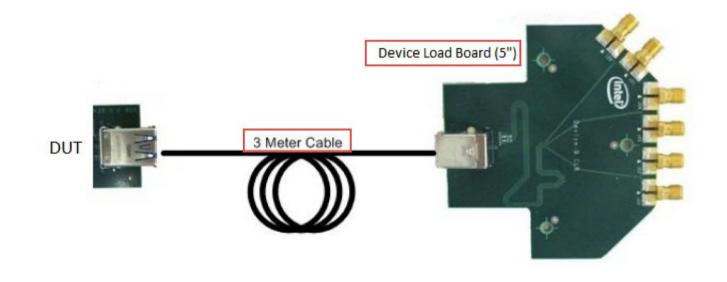
SMP

Test Channel

Gen 1 eye mask

At ADLINK, We CARE

Tool


Table 3. Summary of transmitter compliance tests

Parameter	Symbol	Specification	Data Pattern	Notes
Differential Swing	V _{TX-DIFF-PP}	0.8V - 1.2V	CP8	4, 5
De-emphasis	V _{TX-DE-RATIO}	3.0dB - 4.0dB	CP7	4, 5
DC differential impedance	R _{TX-DIFF-DC}	72Ω - 120Ω	CP8	4, 5
Deterministic Jitter	Dj	0.465UI (max)	CP0	1, 2, 4
Random Jitter	Rj	0.30UI (max)	CP0, CP1	1, 2, 4
Total Jitter	Тј	0.66UI (max)	CP0	1, 2, 4
Eye Height		100mV (min)	CP0	1, 2, 3, 4
Notes:	30.	.5		
 Measured over 10⁶ consistent is calculated as 14.069 Measured after received The eye height is to be 	times the RMS er equalization f	random jitter for 1 unction.	0 ⁻¹² BER.	
width ± 0.05 UI).		1		,
 All specified values in 3.0 Specification. In supersede those contained 	case of conflict,			
5. Optional measuremen	t for characteriza	ation and troublesh	ooting purposes.	

The "host compliance test channel" in Figure 6(a) is used to test compliance for host designs. The compliance channel includes a 3m length SuperSpeed cable (the maximum allowed by the spec) connected to a printed circuit board that has 5" of trace providing connection between a standard device connector and SMAs that then connect to a oscilloscope. The five inch trace length represents a maximum loss device design (PCB plus package).

USB 3.0 SuperSpeed Equalizer Design Guidelines

(a) Host compliance test channel

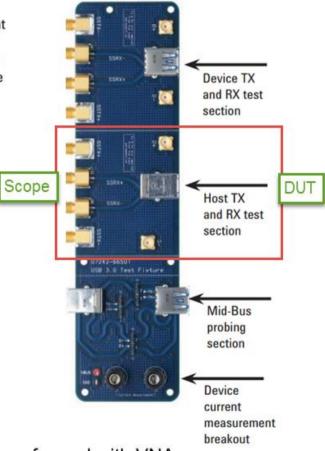
Key specifications:

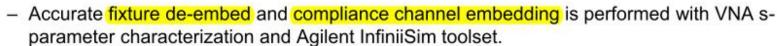
- Provides test point access for transmitter measurements
- Single-ended measurements as required by the USB 3.0 specification for transmitter and receiver validation and compliance testing
- Differential measurements using active probes allow probing of active bus transactions for debug and verification testing
- USB 3.0 power probing features for easy measurement of transient and steady state power states

Тур А

Typ B

Upstream

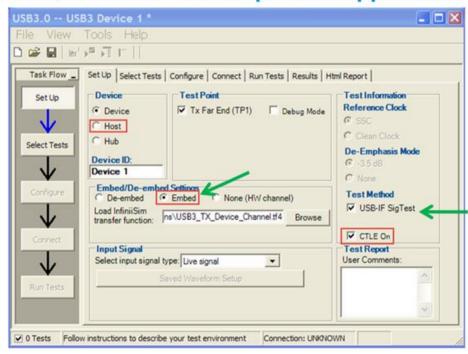

Hub


Тур В

Description:

The U7242A USB 3.0 test fixture will help simplify the USB 3.0 measurement process by providing access to the transmitter and receiver measurement points required for USB 3.0 compliance testing. It has been designed for direct SMA connections for easy and accurate measurements with direct connections to the oscilloscope and J-Bert SMA connections. It also includes probing connections for InfiniiMax active differential probes for the characterization and testing of active bus signaling of USB 3.0 and USB 2.0 traffic.

The U7242A USB 3.0 superspeed electrical test fixture provides signal accessibility and probing for USB 3.0 devices, host and hub upstream and downstream ports.



At ADLINK, We CARE

Host

Downstream

TVDA

U7243A USB 3.0 TX Compliance Application

Use "KEYSIGHT_ENA_HOST_CHANNEL_3MCABLE.s4p" to express the "host compliance test channel".

🚽 USB3_TX_Host_Channel.tf4 🏼

At ADLINK, We CARE

4 5

- 6 ctDef.Transmitter.FileName='C:\Documents and Settings\Administrator\Desktop\USB30 U7242 SHORTCABLE FORHOST.s4p';
- 7 ansmitter.FileName='C:\Documents and Settings\Administrator\Desktop\USB30\DEVICE_3MCABLE.s4p ;SimCktDef.Transmit

Abstract

- Source of Signal Loss
- Pre-emphasis and Equalization
- USB 3.0 transmitter compliance test considerations
- USB 3.0 transmitter channel design case study
- Summary

Sigrity BrdExtractor			
Settings Translate MIXED Layer to:	Plane or Signa	1	
Allow patches on Signal lay	iers		
 Distinguish shapes of differ 			
Add pseudo plane(s) if lack			
Append net name to object			
Include elements with no n	et names		
Create Partial Ckt Names b	ased upon Compon	ent Part Numbe	r
Calculate via plating using	"Drill/Slot symbol" va	alues	
Split vias into several 2-lay	er vias		
Translate antipads as voids	5		
Translate only voltage net	5		
Treat pad on dielectric laye	er as drill		
Unionize traces shorter than:		0	mm
Maximum arc length replaced b	y line segment:	0.2	mm
Name affix :			
Cadence Extracta Path:			
env File Path:	1.1.		
C:\Cadence\SPB_16.6\share\	pcb\text\env		Open
extracta.exe Path:			
C: \Cadence \SPB_16.6 \tools \c	ocb\bin\extracta.ex	e	Open
		Sattings	Cancel
	OK Restore	Settings	Cancer

Via plating can also be translated if specified in the Allegro database "Drill / Slot symbol" information.

If non-functional pads will not be removed, select option "split vias into several 2-layer vias".

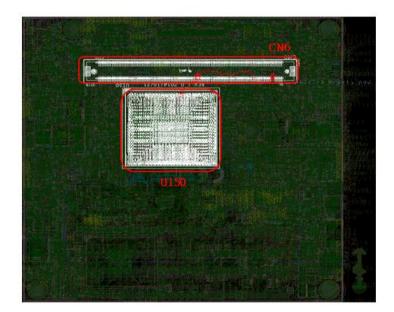
		III.		
 Enforce of 	ausality	View Material	Import Filter	
	Auto :	Set Layer Special Void		
	OK	Cancel	Apply	

General	
Keep shape enabled when the net is disabled	
Gray Disabled	Hide Disabled

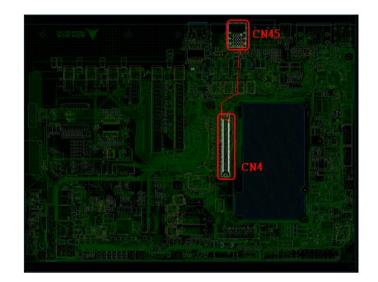
\checkmark	EX1_DDR3_DQ<0>	Eachie Sale at ad Nate
\checkmark	EX1_DDR3_DQ<1>	Enable Selected Nets
	EX1_DDR3_DQ<2>	Disable Selected Nets
	EX1_DDR3_DQ<3>	Enable All Nets
\square	EX1_DDR3_DQ <4>	Disable All Nets
\checkmark	EX1_DDR3_DQ<5>	
\checkmark	EX1_DDR3_DQ<6>	Edit Coupling Parameters
\square	EX1_DDR3_DQ<7>	Delete Coupling Parameters
\checkmark	EX1_DDR3_DQS_N<0	Set With Default Parameters
	EX1_DDR3_DQS_P<0	-

le		
General File Manager Save Options	Schange the 'Network Parameters' options in PowerSI	
Hotkeys	Port Reference Impedance	
ayout		
Grid and Unit	Power Nets 1 Ohm	
	Signal Nets 50 Ohm	
View Processing Trace	Signal Nets 50 Ohm	

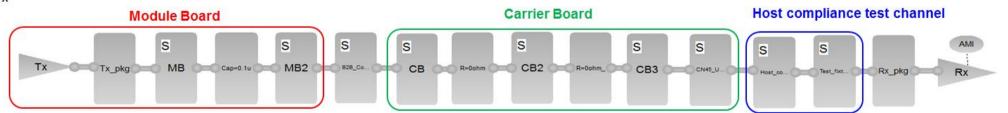
Starting Freq.	Ending Freq.	Sweeping Mode	Freq. Increment	
0 Hz	10 GHz	Adaptive		
Customize Fr	equency Ranges in	ACC, Defeult	ОК	Cano


Calculate DC point as reference

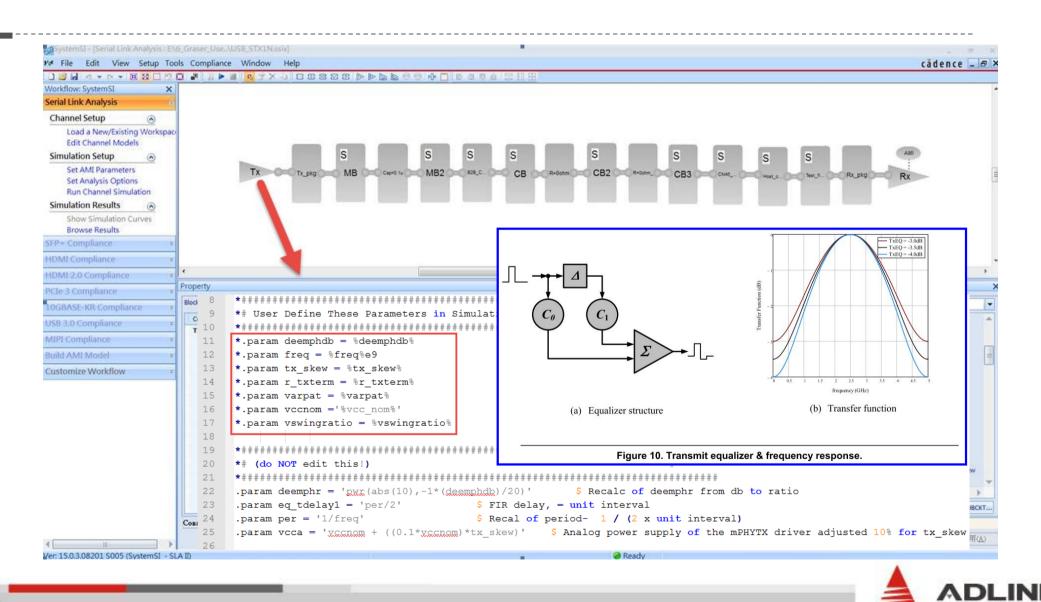
PowerDC Option


2	EX1_DDR3_DQ<0>	5	200	
\checkmark	EX1_DDR3_DQ<1>	5	200	
2	EX1_DDR3_DQ<2>	5	200	
4	EX1_DDR3_DQ<3>	5	200	
~	EX1_DDR3_DQ<4>	5	200	
~	EX1_DDR3_DQ<5>	5	200	
2	EX1_DDR3_DQ<6>	5	200	
\checkmark	EX1_DDR3_DQ<7>	5	200	
\checkmark	EX1_DDR3_DQS_N<0>	5	200	
4	<pre>EX1_DDR3_DQS_P<0></pre>	5	200	

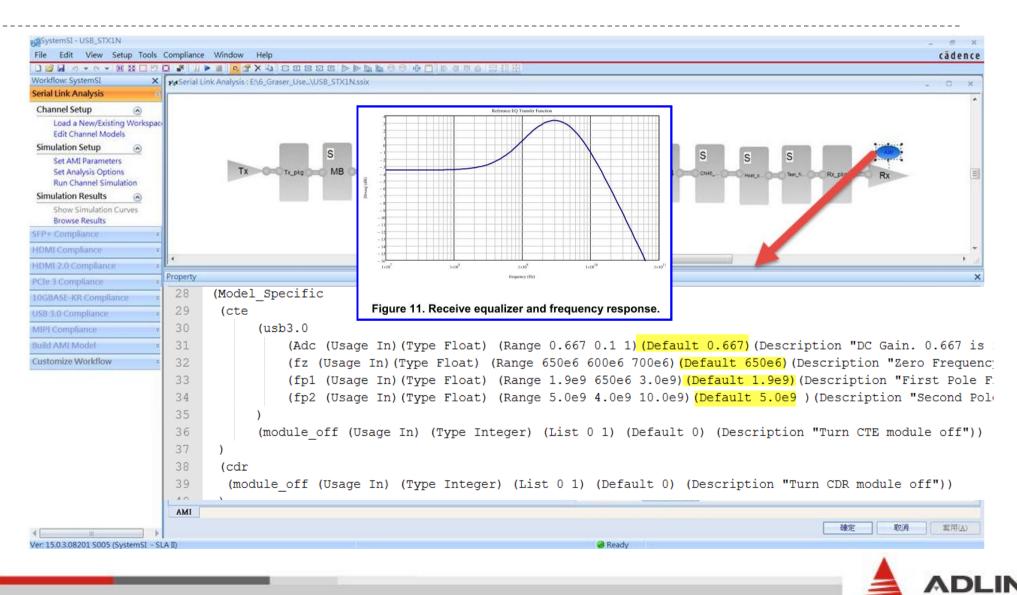
Routing (Module Board)

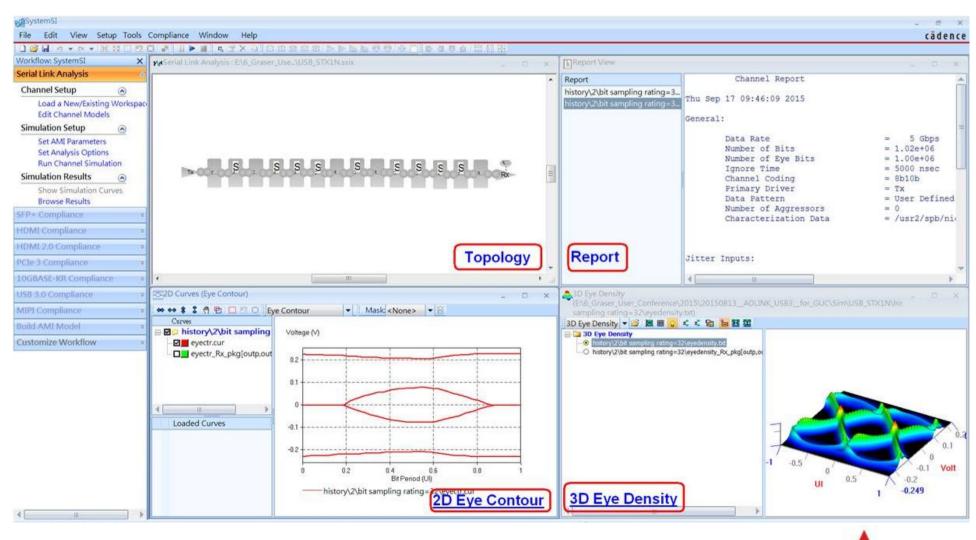


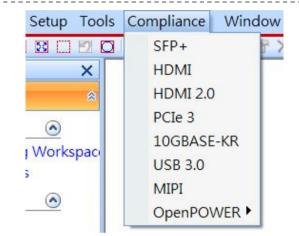
Routing (Carrier Board)



Topology


ΤХ





TECHNOLOGY

TECHNOLOGY

USB 3.0 Report1

USB 3.0 Compliance Report

Generated by Cadence SystemSI, 13.0.2.01141 27th of January 2014

Useful Links:

Cadence website: <u>http://www.cadence.com</u>

USB 3.0 Specification: http://www.usb.org/developers/whitepapers/USB 3 0 e-Compliance methodology 0p5 whitepaper.pdf

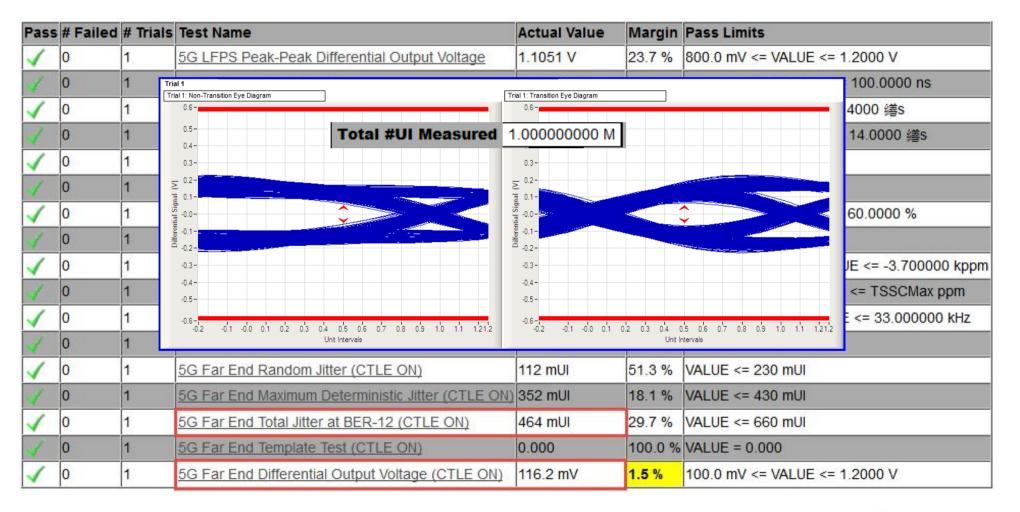
		Speed USB) Compliance Item *	USB3 (Super	Vorkflowr. System SI 🛛 🗙 🛛
				erial Link Analysis 🛛 🗧 🗧
		ose compliance iter	Choo	FP+ Compliance ×
	Transition and a state			IDMI Compliance ×
12	Symbol	Parameter	No.	Cle 3 Compliance ×
		ht At test point 1 (TP1) (Table 6-12)	Eye Heig	OGBASE-KR Compliance ×
	Use CP0	Eye Height	1	ISB 3.0 Compliance
		ential Swing (Table 6-12)	Tx Differ	Channel Setup 📀
	V _{TX-DIFF-PP}	Tx Differential Swing	2	Choose a Template Edit Channel Models
		er (Table 6-12)	Total Jitt	Set AMI Parameters
	Tj	Total Jitter	3	Simulation Setup Choose Compliance Item
		erance Test for Rx (Table 6-19)	Jitter To	Check Compliance
23	Rx in BERT mode	Stressed/Swept Jitter	4	Simulation Results 📀
		• • • • • • • • • • • • • • • • • • •		Results Summary
Cance	OK			Show Simulation Curves
			<u></u>	View Compliance Curves
				ustomize Workflow 🛛 🗧
		Stressed/Swept Jitter	4	Results Summary Export Results Show Simulation Curves View Compliance Curves

At ADLINK, We CARE

Parameters	Symbol	Min	Max	Units	Simulation Results	Pass/Fai
------------	--------	-----	-----	-------	--------------------	----------

Tx Differential Swing

Parameters	Symbol	Min	Max	Units	Simulation Results	Pass/Fail
Tx Differential Swing	V _{TX-DIFF-PP}	0.8	1.2	v	1.122	Pass


Total Jitter

Parameters	Symbol	Min	Max	Units	Simulation Results	Pass/Fail
Total Jitter	Tj		0.66	UI	0.670	Pass

Jitter Tolerance Test for Rx

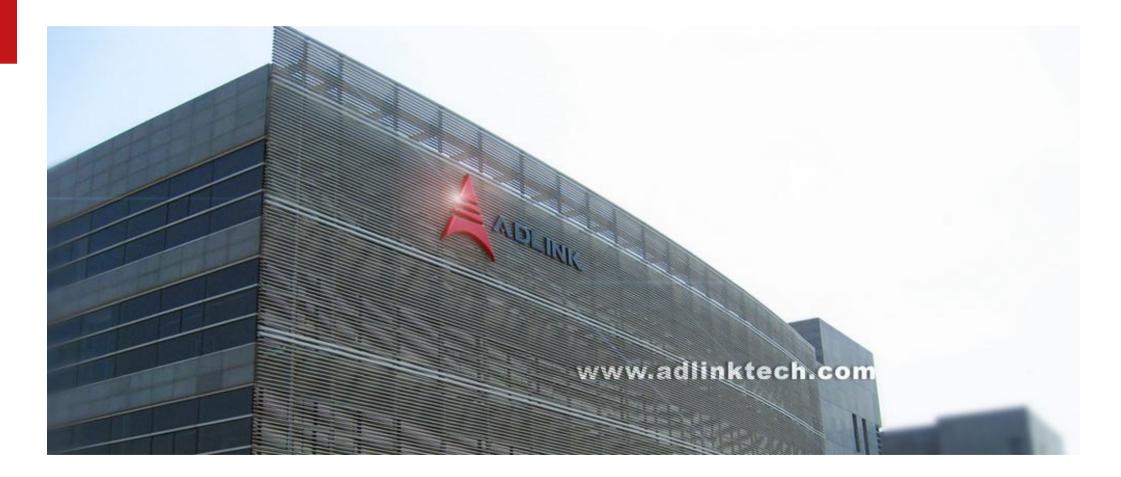
Parameters	Symbol	Min	Max	Units	Simulation Results	Pass/Fail

Abstract

- Source of Signal Loss
- Pre-emphasis and Equalization
- USB 3.0 transmitter compliance test considerations
- USB 3.0 transmitter channel design case study
- Summary

Summary

1. Channel modeling, simulation and measurement can be critical to design success.


2. Using compliance kits in SystemSI automates the testing process.

3. We can use Non-IBIS model as the transmitter and receiver buffer model in SystemSI to conduct the large number of data bits simulation in a short time.

Simulation VS. Measurement						
Characteristic	Simulation	Measurement				
When to use	Early on	Near the end				
Requirements	Simulation software	Scope / VNA / prototype				
Usage	 Understand system margins Making design tradeoffs Design verification 	Prototype verification				
Limitations	 Everything must be modeled Not all effects can be included 	 Affects circuit performance Needs places to probe 				
Advantages	 Fix problems before prototype Can probe anywhere No need for physical prototype 	 Includes most effects Close to reality 				

Thanks for your attention~

