OrCAD Sigrity ERC Advanced and Easy to Use PCB Electrical Check Tool

Oct. 16, 2015

Joy Li Cadence Design Systems

cādence[®]

The gap between DRC and SI simulations is filled by Sigrity ERC/SRC

2. Demo

3. More ERC/SRC application examples

4. Conclusion

DRC is the starting point of a good PCB design

- Good PCB SI design starts with adequate DRCs in layout tools
- Today's designs are getting complicated, DRCs are getting complicated too
- General limitations for complicated DRCs
 - Complicated DRCs are normally harder to set up
 - PCB designs are still measured in mil/mm, so the rules tend to be more conservative

The gap between DRC and SI performance

 The gap between layout designers and SI engineers is huge

- Have different design expertise
- Using different tools
- Measured by different units

DRC Design Rule Check

Layout/Board designer

Layout tools

Geometry domain (mil/mm)

SI engineer

Simulation tools

Electrical domain (mv, ps)

Sigrity ERC/SRC fills the gap

- Sigrity ERC/SRC fills the gap between layout designers and SI engineers
 - Expanded expertise
 - Using same tools
 - Measured by same units

5 Cadence Design Systems, Inc., Cadence Confidential

What is Sigrity ERC?

- Sigrity ERC is <u>individual</u>, <u>segment-level</u> view in <u>geometry</u> <u>domain</u> for PCB's SI performance with
 - Trace <u>reference</u>
 - Trace reference-aware impedance
 - Trace reference-aware coupling
 - Differential pair routing phase
 - # of vias and via locations,
 - Organized for easy SI performance interpretation

What is Sigrity SRC?

- Sigrity SRC is Macro, combined, net-level view in timedomain of impact due to ERC violations measured in mv&ps (no device model needed)
 - Setup considering termination impedance, data rate (pulse width, rise/fall time), and amplitude
 - Results with Tx/Rx/NEXT/FEXT waveforms, SI performance metrics
 - Organized to easy SI performance interpretation along with ERC

ERC/SRC applications (1)

- To screen board and to identify worst case for further analysis
- To investigate SI impact of design rule violations and trade-offs

Problems found in layout design

To fix, or not to fix?

If layout problems can be quantified using mv/ps, it is much easier to decide

cādence°

ERC/SRC applications (2)

 To find out how to fix SI problems shown in SRC simulation

How to fix them in layout If problems can be root caused in layout, it is much easier to fix

Problems found in simulation results

cādence°

ERC/SRC applications (3)

ERC screening & sign-off SRC screening & sign-off

- To compare against ERC/SRC results with
 - Known-good design
 - Reference design
 - Part of the design that has been fully analyzed

SI engineer: Define ERC/SRC rules Layout designer: Check for compliance

Topic 2

1. The gap between DRC and SI simulations is filled by Sigrity ERC/SRC

2. Demo

3. More ERC/SRC application examples

4. Conclusion

Demo

Demo board: DDR3 LRDIMM

- 1 buffer: U100
- 36 DRAMs: U1 U36
- 10 layers

Signal\$TOP Signal\$L2_SIGNAL Signal\$L2_SIGNAL Signal\$L3_SIGNAL Signal\$L4_PWR/GND Signal\$L5_SIGNAL Signal\$L6_SIGNAL Signal\$L7_PWR/GND Signal\$L8_SIGNAL Signal\$L9_SIGNAL Signal\$L8_SIGNAL Signal\$L9_SIGNAL

Generate net groups

- 9 Data net groups
- These net groups can be used for both ERC and SRC

Trace ch	Trace check setup -> Net groups							
Net group names		Tx component	Net name $ riangle$	Rx component(s)				
H 🗹	NG1_U100_U1_U10_U27_U36							
⊞ 🔽	NG1_U100_U11_U2_U26_U35							
∃ 🗹	NG1_U100_U12_U25_U3_U34							
∃ 🗹	NG1_U100_U13_U24_U33_U4							
⊞ 🗹	NG1_U100_U14_U23_U32_U5							
⊞ 🔽	NG1_U100_U15_U22_U31_U6							
⊎ 🗹	NG1_U100_U16_U21_U30_U7							
⊎ 🗹	NG1_U100_U17_U20_U29_U8							
	NG1_U100_U18_U19_U28_U9							
\checkmark		U100	MDQ56	U18, U19, U28, U9				
\checkmark		U100	MDQ57	U18, U19, U28, U9				
\checkmark		U100	MDQ58	U18, U19, U28, U9				
\checkmark		U100	MDQ59	U18, U19, U28, U9				
\checkmark		U100	MDQ60	U18, U19, U28, U9				
\checkmark		U100	MDQ61	U18, U19, U28, U9				
\checkmark		U100	MDQ62	U18, U19, U28, U9				
		U100	MDQ63	U18, U19, U28, U9				
	l ⊕	U100	MDQS7	U18, U19, U28, U9				
\checkmark	L	U100	MDQS7*	U18, U19, U28, U9				

Net group naming: InterfaceName_TxCompName_AllRxCompNames

SRC setup

Set

Simple and easy

O Level-1 (Single lines with ideal PDN; delay, loss, reflection effects)

• Level-2 (Coupled lines with ideal PDN; plus trace, via xtalk effects)

O Level-3 (Coupled lines with non-ideal PDN; plus return path and SSO effects)

C	Level-4	(3DFEM	model	based;	lack	of refe	erence	cases)
---	---------	--------	-------	--------	------	---------	--------	--------

up SI Metrics Check Wi	zard							Transient Tim Coupling (%): Rise Time (ps) Sim Time:	e Step (ps):			5 2 50 2		s 🔻
Set up Tx/Rx Models														-
$T_r = T_r + T_r $														Cance
Import Tx/Rx M	odels	Expo	ort Tx/Rx Mo	odels										
Interface Tx_term and ckt type type	R(ohm) C(F) V_low(V)	V_high(V)	Tdelay(s)	T_r(s)	T_f(s)	T_w(s)	T_period(s)	Rx_term type	R(ohm)	C(F)	(S)Rx_term type	(S)R(ohm)	(S)C(F)
NG1:SE R NG1:Diff R	40 - 40 -	0	1 0.5	0p 0p	100p 100p	100p 100p	525p 525p	30n 30n	R R	40 40	-	R R	5000 5000	-

cādence[®]

14 Cadence Design Systems, Inc. , Cadence Confidential

SRC simulation

- 9 data signal net groups selected, with 72 SE nets and 9 diff pairs
- Level-2 simulation with
 Trace-2-trace couplings
 - Via-2-via couplings
- Simulation time: 18.5min

Output Loading case file into SPDSIM ... Simulation Start ... Extracting trace/pad parameters ... Total number of nets: 81 in time domain ... 81 nets left 80 nets left 79 nets left 78 nets left 77 nets left 76 nets left 75 nets left ... 74 nets left 73 nets left 72 nets left 71 nets left 70 nets left 69 nets left 68 nets left 16 nets left 15 nets left 14 nets left 13 nets left 12 nets left 11 nets left 10 nets left 9 nets left 8 nets left 7 nets left 6 nets left 5 nets left ... 4 nets left ... 3 nets left 2 nets left ... 1 net left Simulation Done. Simulation time: 1108.8 (sec.)

SRC results – Tx/Rx/NEXT/FEXT waveforms

16 Cadence Design Systems, Inc. , Cadence Confidential

cādence

SRC results – FEXT for data signals

100

40

 Chart FEXT Vmax for all 9 data net groups

cādence

17 Cadence Design Systems, Inc. , Cadence Confidential

SRC results analysis – FEXT Vmax

- The longer data signals at U13 have less FEXT
- The shorter data signals at U14 have more FEXT

ERC setup

- ERC setup: Also simple and easy
- All 4 net groups are included in running ERC

et up Trace Check W	izard		- 🗆 ×						
Set up Trace Ched	k parameters								
Impedance/ Imped Coupli	Coupling Check Opi lance ng Coefficient	tion							
-Trace coupli	ng paramters		-						
Coupling	2	%							
Rise time	50	ps							
Nets Selection Check Check Notes: Go Check Notes: Go Check Notes: 1.Detailed NetGroup 2.A pair o	Nets Selection Option O Check all signal nets(enable all signal nets) O Check all enabled signal nets O Check all enabled signal nets Notes: Go to Net Manager to enable nets for Trace Check O Check by NetGroup Notes: 1.Detailed and interactive results are available with Check by NetGroup.								
Coplanar Tra Detect	aces and model the copl ng Highlight Color	anar traces							
		< <u>Back</u> <u>N</u> ext > Ca	ancel						

cādence°

ERC Results

Name

ERC_DDR3_LRDIMM_BoardRoutingInfo_091515_192115.csv

- ERC_DDR3_LRDIMM_CplDetailed_091515_192115.csv
- ERC_DDR3_LRDIMM_CplSum_091515_192115.csv
- ERC_DDR3_LRDIMM_ImpDetailed_091515_192115.csv
- ERC_DDR3_LRDIMM_ImpSum_091515_192115.csv
- ERC_DDR3_LRDIMM_UpperLowerRefSum_091515_192115.csv
- TraceCKResult_ERC_DDR3_LRDIMM_091515_192115_result.xml
 -] TraceCKResult_ERC_DDR3_LRDIMM_091515_192115_resultBin.bin

Results and Report

Net Based Tables/Plots

Impedance Summary Table Impedance Detailed Table Coupling Summary Table Coupling Detailed Table Upper/Lower Layer Reference Table Coplanar Reference Table Board Routing Information Table Impedance Layout Overlay Coupling Layout Overlay 0

0

 (\land)

0

0

Impedance between 2 Components

Impedance Plot (collapsed) Impedance Plot (expanded) Impedance Table Impedance Layout Overlay

Coupling between 2 Components

Coupling Plot (collapsed) Coupling Plot (expanded) Coupling Table Coupling Layout Overlay

Reference between 2 Components

Reference Plot (expanded)

Violations

Impedance Violation Table Coupling Violation Table

Result File and Report

Save Results Load Results Generate HTML Report Save HTML Report

U13 vs. U14 Impedance comparison – layout overlay

Impedance(Ohm

U13 vs. U14 Trace reference

Reference U100→U14 More discontinuity

Reference U100 \rightarrow U13

Trace Reference Plot (expanded)

Less discontinuity

Note:

- The effect of impedance changes caused by trace reference changes are included in level-2 SRC simulation
- Since level-2 simulation assumes ideal pwr/gnd, the return path discontinuities effects are not included

cādence°

Trace Reference Plot (expanded)

The gap between DRC and SI simulations is filled by Sigrity ERC/SRC

2. Demo

3. More ERC/SRC application examples

4. Conclusion

ERC/SRC example 1

$\begin{array}{c} ERC \rightarrow SRC \\ \rightarrow SI simulation \end{array}$	-	To screen board and to identify worst case for further analysis To investigate SI impact of design rule violations and trade-offs
ERC ← SRC	•	To find out how to fix SI problems shown in SRC simulation
ERC screening & sign-off SRC screening & sign-off		 To compare against ERC/SRC results with Known-good design Reference design Part of the design that has been fully analyzed

cādence°

ERC/SRC example 1 DDR

- Memory subsystem for a typical low-end server board
 - 1 controller, 4 DRAMs 2 DDR channels
 - 6 net groups for all DDR nets (178 SE nets; 20 diff pairs)

SI metrics check setup -> Net groups							
Net group names	Tx component	Net name	△ Rx component(active)				
⊞ 🗹 NG1_U 1_ D1							
□ ✓ NG1_U 1_ D4							
	UC1	DDR_B_CAB0	D4				
	UC1	DDR_B_CAB1	D4				
	UC1	DDR_B_CAB2	D4				
	UC1	DDR_B_CAB3	D4				
	UC1	DDR_B_CAB4	D4				
	UC1	DDR_B_CAB5	D4				
	UC1	DDR_B_CAB6	D4				
	UC1	DDR_B_CAB7	D4				
	UC1	DDR_B_CAB8	D4				
	UC1	DDR_B_CAB9	JD4				

cādence°

ERC/SRC example 1 SRC setup and waveform results

- SRC setup
 - Pulse width for 1.6GT data with 100ps rise ti
 - -40Ω termination
- Results
 - Tx waveforms
 - Rx waveforms (simulated delays)
 - FEXT waveforms (max, min, pk-2-pk)
 - NEXT waveforms (max, min, pk-2-pk)

ERC/SRC example 1 SRC – FEXT results

Cadence Design Systems, Inc., Cadence Confidential 31

ERC/SRC example 1 SRC – the problem Byte

UD2

UD3

- One of the problems identified is Byte0 for channel B has large xtalk
- PCB routing

32

- Data_A Byte0
 Smaller FEXTs
- Data_B Byte0
 Larger FEXTs

ERC/SRC example 1 ERC – DataA Byte0 impedance

Start curve

¢,

24 -

123.64

36.338

ERC/SRC example 1 ERC – DataA Byte0 coupling

Cadence Design Systems, Inc., Cadence Confidential

ERC/SRC example 1 ERC – DataB Byte0 coupling

ERC/SRC example 1 ERC – # of vias

- DataA Byte0: 2 vias
- DataB Byte0: 4 vias

Net name	Δ	No. of vias
DDR_A_D0		2
DDR_A_D1		2
DDR_A_D2		2
DDR_A_D3		2
DDR_A_D4		2
DDR_A_D5		2
DDR_A_D6		2
DDR_A_D7		2

Net name	No. of vias
DDR_B_D0	4
DDR_B_D1	4
DDR_B_D2	4
DDR_B_D3	4
DDR_B_D4	4
DDR_B_D5	4
DDR_B_D6	4
DDR_B_D7	4

ERC/SRC example 1 ERC – # of reference discontinuities

Comparable

Net count	Net name 🛛 🛆	No. of reference discontinuities	No. of no ref segments
29	DDR_A_D0	11	0
30	DDR_A_D1	8	0
31	DDR_A_D2	11	0
32	DDR_A_D3	9	0
33	DDR_A_D4	7	0
34	DDR_A_D5	13	0
35	DDR_A_D6	14	0
36	DDR_A_D7	7	0

Net count	Net name $ riangleq$	No. of reference discontinuities	No. of no ref segments
138	DDR_B_D0	6	0
139	DDR_B_D1	9	0
140	DDR_B_D2	7	0
141	DDR_B_D3	6	0
142	DDR_B_D4	10	0
143	DDR_B_D5	11	0
144	DDR_B_D6	5	0
145	DDR_B_D7	10	0
146	DDR_B_D8	9	0

To reduce the xtalk level of channel B Byte 0, user can consider one, or combination, of the following improvements

- 1. Via reduce via number
- 2. Impedance reduce the impedance discontinuities in pin field routing length
- 3. Coupling reduce the coupling in pin field routing

ERC/SRC example 2

40 Cadence Design Systems, Inc. , Cadence Confidential

cādence°

ERC/SRC example 2 ERC coupling results

cādence°

ERC/SRC example 2 SRC NEXT/FEXT waveforms

42 Cadence Design Systems, Inc. , Cadence Confidential

cadence

ERC/SRC example 2 Level-3 SI simulation using IBIS models

Voltage (V)

ERC/SRC example 3 **FEXT** results

Cadence Design Systems, Inc. , Cadence Confidential 45

The gap between DRC and SI simulations is filled by Sigrity ERC/SRC

2. Demo

3. More ERC/SRC application examples

4. Conclusion

46 Cadence Design Systems, Inc. , Cadence Confidential

SRC net-level view \rightarrow ERC's segment-level view

Sigrity SRC • Layout SI macro view at <u>net level</u> • All inclusive end results

• Shows <u>what</u> happened and its <u>effect</u> on performance

Sigrity ERC

- Layout SI micro level view at segment level
- Individual segmented results
- Shows why low performance happened and how to fix it

cādence°

cādence®