PCB Power Delivery Design from DC to Mid-Frequency

Foxconn Abby Chou

Company Introduction

Products Server Storage Mobile Phone Pad TV :

CESBG-TEC FOXCONN PROPERTY

Voltage Drop and Thermal Co-Simulation

Illustration for Voltage Drop

CESBG-TEC FOXCONN PROPERTY

HFOXCONN

How to Calculate Resistance

✤ 40mil trace width for 1A current ?

Need to take cross-section area and length into consideration.

$$R_{Copper} = \rho \frac{L}{A} = \frac{1}{\sigma} \frac{L}{A}$$

- R : Resistance (Ω)
- ρ: Resistivity (Ω*m)
- σ : Conductivity (S/m)
- L: Length (m)
- A: Cross-Section Area (m²)

CESBG-TEC FOXCONN PROPERTY

Analysis in PowerDC

For the irregular shape, manual calculation by formula is difficult and simulation is necessary.

CESBG-TEC FOXCONN PROPERTY

MFOXCONN

Voltage Drop Correlation

CESBG-TEC FOXCONN PROPERTY

PCB Temperature

HOT!!

High Current Density

High Temperature Rise
PCB Burned

Y

MFOXCONN

CESBG-TEC FOXCONN PROPERTY

 \mathbf{O}

MS

PCB Temperature Simulator

PCB temperature become higher and more important due to the larger current.

Copper Width : 1mm, Cross-Section : 0.067mm²

Current : 1.1A, PCB Temperature Rise : 5°C

FOXCON

PCB Temperature Distribution

Foxconn in-house tool can calculate PCB temperature distribution by using copper width, cross-section and flowing current. (Ref. doc. : IPC-2221, IPC-2152)

10

CESBG-TEC FOXCONN PROPERTY

In-House Simulator

Temperature Simulation in PowerDC (1/2)

Total power: 1400W

Variation < 4°C

Temperature Simulation in PowerDC (2/2)

Total power: 3900W

Simulation

Variation < 5°C

CESBG-TEC FOXCONN PROPERTY

HFOXCONN

Via Current Simulation in PowerDC (1/2)

> The connector via current can not over 10A for thermal concern.

Current Vector & Density Plot

Via Current Plot

Foxconn

Via Current Simulation in PowerDC (2/2)

✓ Cut the shape to change path resistance for via current balancing purpose.

Current Vector & Density Plot

Via Current Plot

HFOXCOL

PDN AC Analysis Shrence

Power Delivery Network

Transient Simulation

Transient Voltage Correlation

Simulation

Measurement

	Measurement Value	Simulation Value	Difference
1 st Voltage Spike	1.086V	1.0863V	0.3mV

CESBG-TEC FOXCONN PROPERTY

Measurement Fail Issue

The min voltage fail to meet specification.

CESBG-TEC FOXCONN PROPERTY

Transient Correlation - Original

Using PowerSI to extract PDN model to get transient waveform.

Simulation Results

Measurement Results

	Simulation	Measurement
Min Voltage (V)	1.089	1.090

CESBG-TEC FOXCONN PROPERTY

MFOXCONN

Failure Issue Analysis

Simulation

Measurement

It can be found that the parasitic loop inductance dominates most of the droop. Thus it is necessary to inspect the loop inductance of board file.

CESBG-TEC FOXCONN PROPERTY

Impedance Analysis in PowerSI

The original 22uF MLCC self-resonant frequency is 2.36MHz, but now it moves to 700kHz.

CESBG-TEC FOXCONN PROPERTY

Current Loop Analysis

Loop Inductance Analysis in OPI

• For overall loop inductance, improvement case is better than original.

CESBG-TEC FOXCONN PROPERTY

MFOXCONN

Measurement

Original Layout

After Modifying Layout

Spec. = 70mV	Original Layout	Modified Layout
Voltage Droop (mV)	80.32	54.44
Improvement	△ V = 80.32 – 54.44 = 25.88 mV	

CESBG-TEC FOXCONN PROPERTY

Summary

Simulation tools can..

help designer to ensure design quality

predict validation results and has good correlation

verify designer's thought and find the best solution

more..

FOXCON

THANK YOU

