2.5D/3D Design Solution

Eric Chen & Scott Liu

31/Oct/2014

Roadmap data is provided for informational purposes only and does not represent a commitment to deliver any of the features or functionality discussed.
Design Overview

- U-bump
- Logic IC
- Mem IC
- Silicon/Organic substrate
- Interposer
- C4 bump
- Solder Ball
- VRM
- Package substrate
- BGA
- PCB
- Board

Courtesy of TSMC
© 2014 Graser Technology Co., Ltd. All rights reserved. The Graser logo are trademarks of Graser Technology Co., Ltd.
Multiple Pathways to 2.5D/3D Integration

<table>
<thead>
<tr>
<th>Packaging Platform</th>
<th>Examples</th>
<th>Drivers / Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon based interposers</td>
<td></td>
<td>Silicon partitioning
CPU/GPU – memory I/F
High-end computing
High-end networking
Memory, FPGAs</td>
</tr>
<tr>
<td>Die stacking with TSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan out wafer level Organic interposers</td>
<td></td>
<td>Silicon partitioning
Logic/memory integration
Mobile convergence
AP, BB, modem, PMIC, RF
Smart phones & tables</td>
</tr>
<tr>
<td>Conventional laminate build-up technologies</td>
<td></td>
<td>Multi-die integration
Logic/memory integration
Baseband, analog, RF, passive</td>
</tr>
</tbody>
</table>
Fan Out Wafer Level Package (FO-WLP)

Impact on the packaging eco-system

• FO-WLP is the fastest growing packaging segment
 – Benefits of cost, performance, thinner profile, & silicon partitioning
 – Technology of choice for HEC

• Lower risk/cost roadmap to 3D integration for some applications

• Emergence of traditional IC fabs into the packaging space
 – TSMC, Intel, Global Foundries, and others

• FO-WLP is considered a “middle-end” technology
 – Front-end IC fabs extending capabilities down into packaging space
 – Back-end OSATs extending capabilities up into wafer level space
 – Both are aggressively moving to support FO-WLP
System Interconnect Planning – A growing challenge

Drivers / Trends

- Advanced nodes driving functional density and pin counts, or use of multi-substrate solutions
- Complexity and performance requirements of high-speed interfaces
- Die to package net assignment becoming more challenging—PCB considerations
- Geographically diverse engineering teams and packaging resources

Impact

- Unpredictable system cost and performance
- Longer development cycles
- Clearly communicating design intent
The Impact of Advanced Packaging Technologies
Driving new design requirements and functionality

- Co-design across multiple die, interposers and packages
 - Coordination of IOpads, bumps, RDL, ball pads, TMVs, etc…
 - Support from early planning through implementation
- Increasing complexity of high performance interfaces
 - DDR3, DDR4, PCI Express Gen 3, USB 3.0, etc…
 - Constraints, routing, and optimization
- Support for embedded die within the substrate
 - For both traditional laminate and FO-WLP technologies
- Potential for ‘silicon-like’ design rules and requirements
 - Via structures, metal density, routing, end-caps, etc…
 - Foundry supported PDKs & flows, GDSII manufacturing hand-off
- Multi-die implementation
 - Side-by-side, single-stack, and multi-stack
- Cu Pillar
Advanced Technology Planning & Implementation

<table>
<thead>
<tr>
<th>Packaging Platform</th>
<th>Examples</th>
<th>Cadence Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon based interposers</td>
<td></td>
<td>Encounter / Virtuoso</td>
</tr>
<tr>
<td>Die stacking with TSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan out wafer level Organic interposers</td>
<td></td>
<td>SIP Layout-XL</td>
</tr>
<tr>
<td>Conventional laminate build-up technologies</td>
<td></td>
<td>OrbitIO APR</td>
</tr>
</tbody>
</table>
Custom 3D-IC Design Flow

1. “Create Bump and TSV” GUI
 - Stacked Die file (*.xml)
 - Bump location file (*.bump)
 - Power side file (*.side)

2. Placement of ubump, flip-chip bump & tsv via

3. Establishing connectivity between bumps
 - Constraint setting and routing with VLS-GXL

4. Bump alignment checker

Run PVS for DRC/LVS
Run Quantus QRC for extraction
Run post-sim for EM/IR-Drop analysis
Run Voltus-Fi for analyzing EM/IR-Drop result

Note: 1+2+3+4 → 3D-IC features
What’s Available in Virtuoso Specifics

- Virtuoso 6.1.6/ ICADV12.1

- Bump/TSV creation from adjacent die
- Auto-assign the Terminal to Bump
- Utilities to help resolve bump miss-alignment
- Export the Pad Locations/Bump Mapping File for performing the IR drop analysis
Wrapper Schematic

- Creating Wrapper in VSE
 - Top schematic storing connectivity from die to die/interposer.
Creating Bump and TSV from VLS

- Create bumps by using a bump location file to transfer bump information from one die to the adjacent die.
- Create bump arrays on dies such as silicon interposers. You need to assign these bump instances to their respective terminals.
Establishing Connectivity Between Bumps

- After creating bumps and TSVs, you establish connectivity between bumps.
 - Assigning Bump Instances to Terminals
 - Moving PinFig Objects to Bumps
 - Creating Bump Labels
When making manual adjustments to the design, you may accidentally move or delete a bump.

This is integrated with Annotation Browser. So, you can see the list of misaligned bumps there with all relevant info.

Using the “Check Bump alignment” to prevent this error condition from occurring.
Using Co-Design

- This allows designer to see one die over another at the same time. For example, you can work on the Interposer actively in one window, with the die visible dimly in the background. And in the second window, it is reverse, i.e. the die is active with Interposer in background.
Saving Pad Location and Bump Mapping File

- **Pad Locations**
 - This file serves as an input for performing the IR drop analysis.

- **Bump Mapping**
 - This file will serve as an input for performing the IR drop analysis.
Advanced Technology Planning & Implementation

<table>
<thead>
<tr>
<th>Packaging Platform</th>
<th>Examples</th>
<th>Cadence Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon based interposers</td>
<td></td>
<td>Encounter / Virtuoso</td>
</tr>
<tr>
<td>Die stacking with TSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan out wafer level Organic interposers</td>
<td></td>
<td>SIP Layout-XL OrbitIO APR</td>
</tr>
<tr>
<td>Conventional laminate build-up technologies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2014 Graser Technology Co., Ltd. All rights reserved. The Graser logo and trademarks of Graser Technology Co., Ltd.
Technology Enablement – SPB 16.6
Multi-Fabric Planning and Prototyping (Co-Design)

- Comprehensive co-design delivering interoperability across IC, interposer, package, and pcb
 - Rapid convergences across all fabrics
 - Delivering value and efficiency from early planning through implementation

- OrbitIO provides multi-fabric interconnect planning in a single-canvas environment
 - Dynamic full system view and data access
 - Top-down or bottom-up connectivity planning

- Easily plan and communicate design intent (including a route plan) between engineering groups or external design sources
Technology Enablement – SPB 16.6
Interconnect planning for advanced technologies

OrbitIO™ System Planner
System Interconnect Planning

LEF/DEF
Die Abstract

PKG Data
Direct R/W

PCB Data
Direct R/W

Encounter
& Virtuoso

SIP Layout-XL
(package)

Allegro PCB
(layout & schematic)

• Efficient planning of the multi-fabric elements between die, package, interposer, and PCB all within a single canvas
• Objective: produce well qualified design definitions ready for implementation
Technology Enablement – SPB 16.6
Wafer/Chip Scale Package Enhancements

Updates to *Compose Die from Geometry* combined with several productized beta features expedite the creation and management of die symbols from external data sources like DXF or GDSII.

- **Compose Die from Geometry** updated to use additional information.
 - Added mapping for Pin Numbers and Net Names
 - Cross-probe highlight

- Productized commands to ease conversion of geometries into formal packaging content
 - Shape to cline
 - Shape to padstack
 - Shape to via
Technology Enablement – SPB 16.6
High performance routing and optimization

- Advanced Package Router (APR)
 - Sigrity technology to reduce design cycle-time of complex packages
 - High-speed constraint-aware, auto-routing of flip-chip and wirebond designs

- Auto-interactive routing technologies to plan, implement, and optimize high-performance interfaces
 - AiDT – auto-interactive delay tuning
 - AiPT – auto-interactive phase tuning
 - AiBT - auto-interactive breakout
 - Timing vision
Technology Enablement – 2015 and beyond
Overhaul of Layer Stack-Up and Pad Stacks

Layer Stack Overhaul
- ‘Excel like’ usability
- Single cross-section editor
 - Consolidates input sources
 - Detailed view of stack-up construction and drills
 - Embedded component setup
 - IPC2581 stack-up import/export
- Customer layer IDs (3 alphanumeric)
- User-defined columns
- Layer color match
- Expandable column view
- Thickness tolerances

Pad Stack Overhaul
- New unified pad editing environment
- Expanded number of shape primitives
- Support complex mask schemes
- Enhanced DRC support related to pads
- Adjacent layer keep-outs
- Numerous other enhancements

Enhanced support for embedded die, Cu Pillar and complex via structures
Technology Enablement – 2015 and Beyond

Enhanced stacked application support

• Interposer support
 – New interposer design object
 – View complete stack-up in one database with ability to edit the individual substrates

• Dual sided pins
 – Pins on both sides of a die
 – Support for 2.5D / 3D

• 3D Viewing enhancements
 – Platform support
 – STEP model creation support
Summary

- Cadence focuses on making you successful.
- Innovative features to address advanced technologies like interposers, FO-WLP, 2.5/3D.
- Enhance design efficiency through automation and interoperability.
- Future directions are influenced by your requirements.