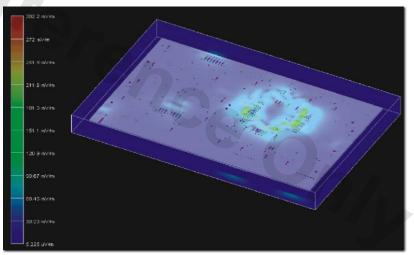

OrCAD Sigrity ERC

Josh Moore – Product Management Director Cadence OrCAD Solutions

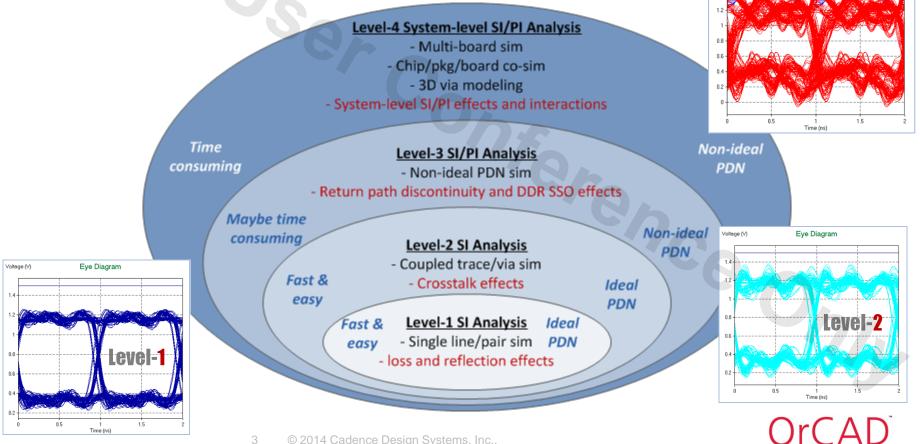


Cadence Sigrity – Industry-leading SI / PI Solution

- Product of choice for power and signal integrity analysis
 - Integration with full wave 3D EM solver
- Layout-based frequencydomain SI / PI simulation
 - Highly accurate modeling of PCB structures
- Single-ended and mixed-mode results and post-processing
- Unique capability for ensuring accuracy down to DC
- Targeted workflows to streamline setup operations

Frequency domain SI, PI and EMC

Different SI / PI / EMI Levels for Different Needs

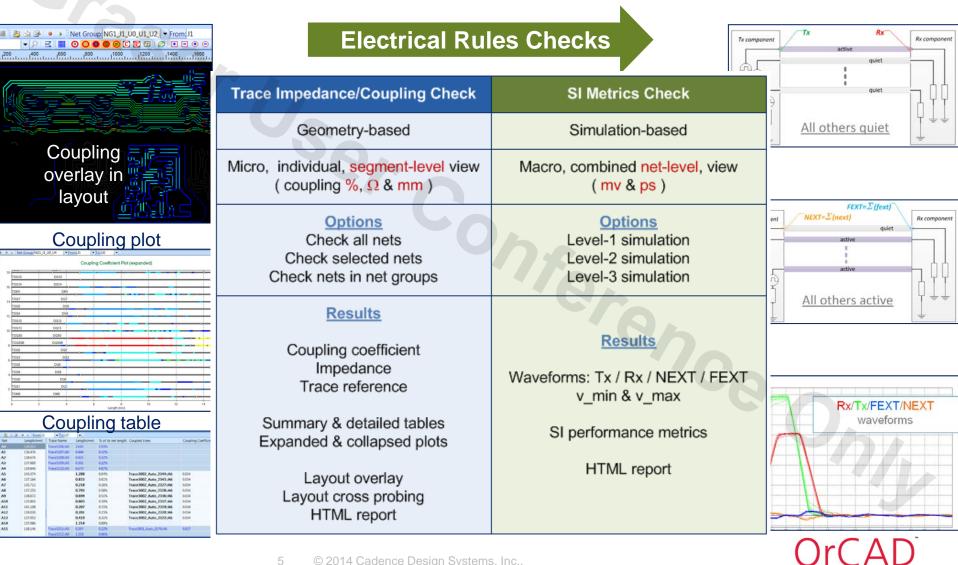

Voltage (V)

Eye Diagram

CADENCE PCR SOLUTION

evel.

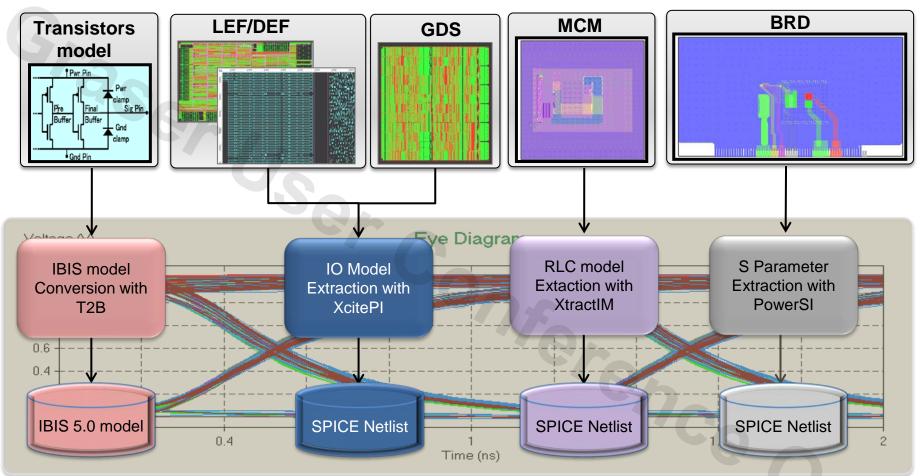
- Simulations and analysis can be done at four levels
 - Based on considerations of trace / via couplings, non-ideal PDN, etc.
- Both layout-based and model-based analysis


Layout-based, Time-domain SI / PI Simulation

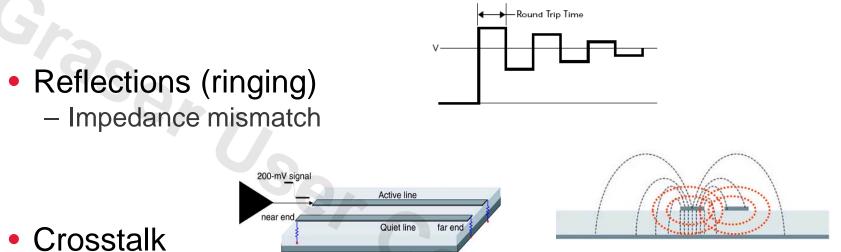
- SPEED200[™] is industry's only layout-based, timedomain SI / PI solution
- Five workflows for SI / PI analysis from level 1 to 3

<u>Workflow 1</u> General SI Simulation	<u>Workflow 2</u> Trace Impedance/ Coupling Check	<u>Workflow 3</u> SI Performance Metrics Check	<u>Workflow 4</u> DDR Simulation	<u>Workflow 5</u> Time-domain PDN Simulation
Mainstream SI L1/L2 for fast sim Easy to setup; Sim runs fast Waveforms & measurements	Geometry based Trace impedance, coupling & reference check for entire board or net groups Results tables; Results plots; Layout overlay; Layout x-probing	Simulation based L1/L2 for fast sim L3 for non-ideal PDN Loss, reflection, xtalk check, typically by net groups Waveforms; Xtalk v_max & v_min	Layout-based DDR simulation L1/L2 for fast sim L3 for SSO No s-parameter model needed for on-board DRAMs Waveforms & measurements	Layout-based TD PDN sim PDN chip-pkg- board co-sim with -Voltus die mode - XcitePI IO model with die grid Voltage / current distributions; dynamic noise propagation

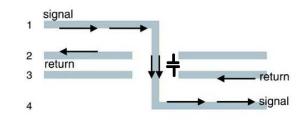
Geometry- and Simulation-based Layout Checks

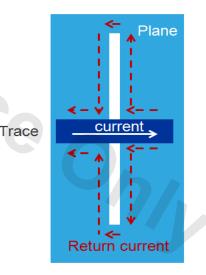

CADENCE PCB SOLUTION

SI Barriers for PCB Designers


Complex Flow for Simulation and Verification

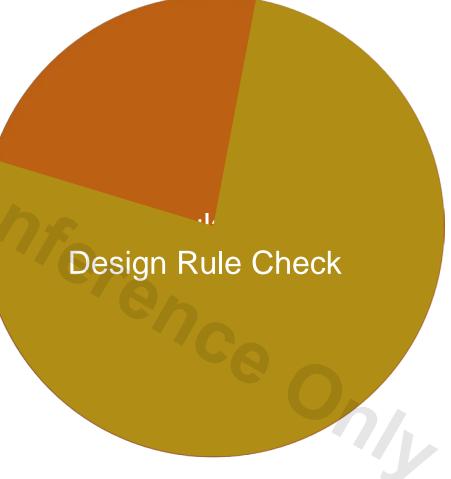
 Comprehensive SI / PI simulation and analysis relies on experienced, well trained engineers with sophisticated tools

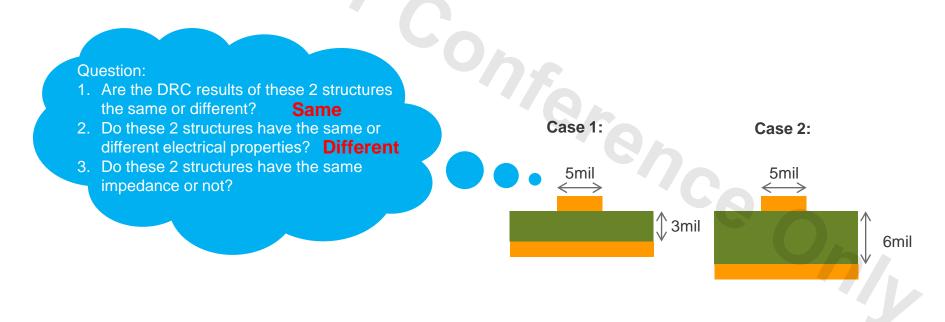



Common SI Analysis Needs to be Simple

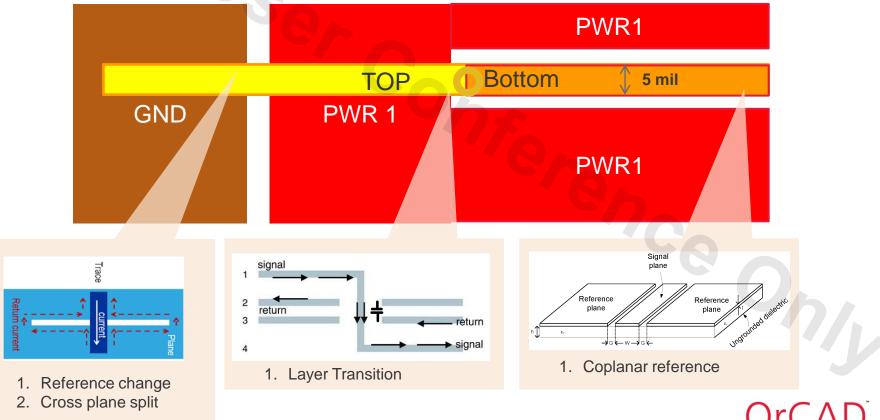
- - Electromagnetic coupling between adjacent signal lines

- Return path discontinuity
 - Layer transitions or plane split crosses

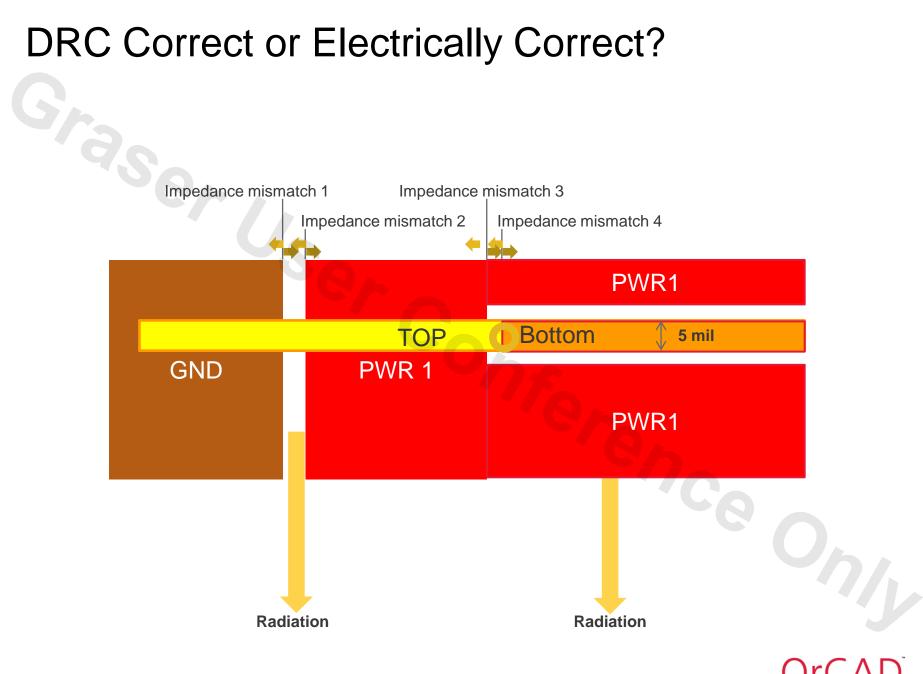



Simulation and Design Rule Check

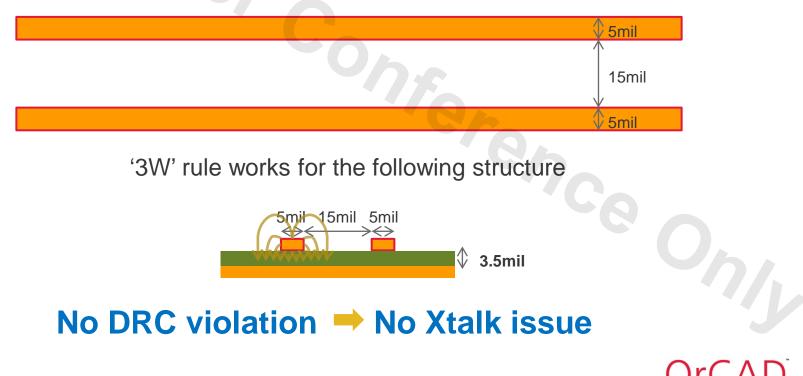
- Ideally, designs should be 100% driven and validated by simulation
- Typically, pre-layout simulation results drive design rules
- Only small portion covered by simulation
- PCB DRCs usually contain only dimension information such as length, width, distance, spacing, etc.
- What do constraints / DRCs forget to tell you?



 Simple design rule checks for dimension will not validate electrical characteristics



- Pre-layout simulation, defines a trace width to be 5 mils for a target impedance
 - The following routed trace results in **no DRC** violation



CADENCE PCR SOLUTION

CADENCE PCB SOLUTIONS

- To minimize crosstalk, many follow the '3W' rule set the spacing between critical adjacent traces to 3 times the width of the trace
 - The following routed trace results in no DRC violation

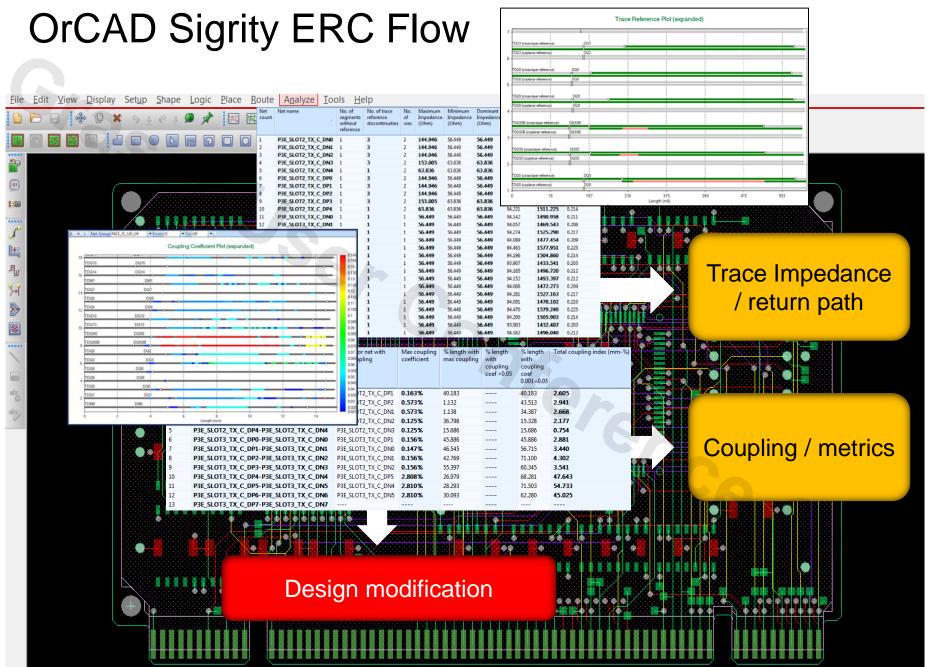
 What if the stack-up looks like the following, will '3W' rule still work?

- DRCs only validate MINIMUM, PHYSICAL requirements of design constraints
- Do no DRCs mean a good, quality design?
- Can PCB designers identify and address signal quality issues?

How difficult is it to setup? Is it easy to use? Do I have to be an SI expert? Is it expensive?

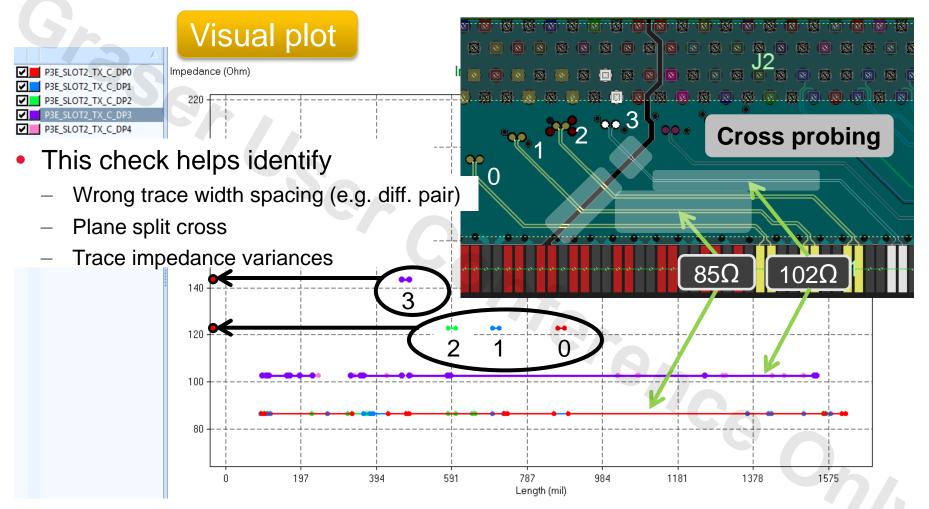
OrCAD Sigrity Technology for PCB Designers

Electrical Rule Checks with OrCAD Sigrity ERC

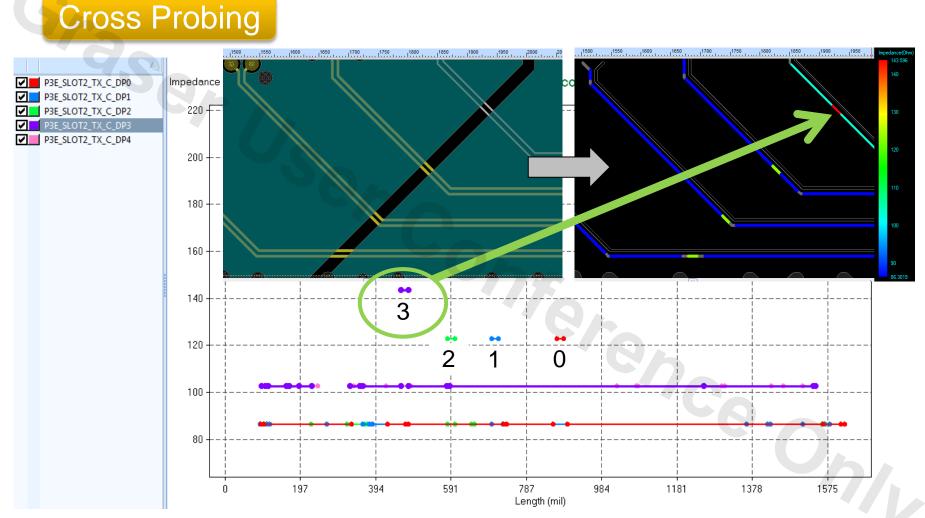

- ERCs are better than DRCs for signal quality validation – Go beyond MINIMUM, GEOMETRY-BASED constraint validation
- Easy to use, minimal setup
- PCB designers can identify and address signal quality issues

OrCAD Sigrity ERC (coming 2015 / 17.0 & QIRs)

- No complex modeling / setup required
- Electrical checks include
 - SI Metrics (Level 1 & Level 2)
 - Differential Pair Serial Link Screening
 - Trace impedance check
 - Trace return path check
 - Via return path check
 - Trace coupling check
 - Net coupling check
 - Additional future checks
- OrCAD FloorPlanner
 - Place and route edits only
 - Cross-probe (pan / highlight / zoom) between analysis & layout



© 2014 Cauence Design Systems, inc.


CADENCE PCB SOLUTIONS

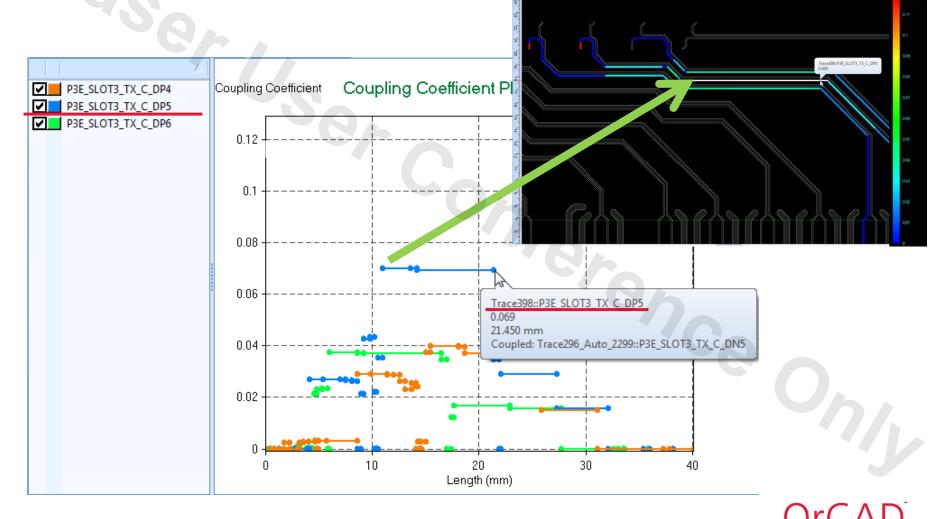
Trace Impedance Check

 Visually or tabular results for trace impedance check shows trace segment(s) mismatch vs. target impedance

Trace Impedance Check

Cross probing allows issues to be quickly identified

Trace Impedance Check

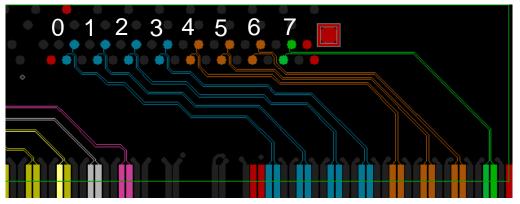

Tabular Results

Net count	Net name	No. of segments without reference	No. of trace reference discontinuities	No. of vias	Maximum Impedance (Ohm)	Minimum Impedance (Ohm)	Dominant Impedance (Ohm)	Dominant Imp Length (%)	Trace total length (mil)	Trace delay(ns)
1	P3E_SLOT2_TX_C_DN0	1	3	2	144.946	56.449	56.449	92.921	1633.158	0.233
2	P3E_SLOT2_TX_C_DN1	1	3	2	144.946	56.449	56.449	93.168	1583.722	0.225
3	P3E_SLOT2_TX_C_DN2	1	3	2	144.946	56.449	56.449	93.186	1575.168	0.224
4	P3E_SLOT2_TX_C_DN3	1	3	2	153.005	63.836	63.836	93.074	1549.678	0.220
5	P3E_SLOT2_TX_C_DN4	1	1	2	63.836	63.836	63.836	94.228	1513.121	0.214
6	P3E_SLOT2_TX_C_DP0	1	3	2	144.946	56.449	56.449	92.923	1633.643	0.233
7	P3E_SLOT2_TX_C_DP1	1	3	2	144.946	56.449	56.449	93.221	1583.404	0.225
8	P3E_SLOT2_TX_C_DP2	1	3	2	144.946	56.449	56.449	93.184	1574.865	0.224
9	P3E_SLOT2_TX_C_DP3	1	3	2	153.005	63.836	63.836	93.059	1546.528	0.219
10	P3E_SLOT2_TX_C_DP4	1	1	2	63.836	63.836	63.836	94.221	1511.225	0.214
11	P3E_SLOT3_TX_C_DN0	1	1	1	56.449	56.449	56.449	94.142	1490.958	0.211
									1100 513	0.208
Cross plane split?									0.217	
										0.209
	Any trace comment microstab? Croce place colit?									0.225
• /	 Any trace segment mismatch? Cross plane split? 									0.214
_										0.203
•	 Too much breakout neck length? 									0.212
										0.212
 Too much MS/SL routing difference in a group? 								0.209		
The much wo/or routing unreferice in a group?								0.217		
										0.210
	The same trace length means the same trace delay?							0.225		
									0.214	
 Routing on MS/SL has different trace delay. 							0.203			
								0.212		

CADENCE PCB SOLUTIONS

Trace Coupling Check

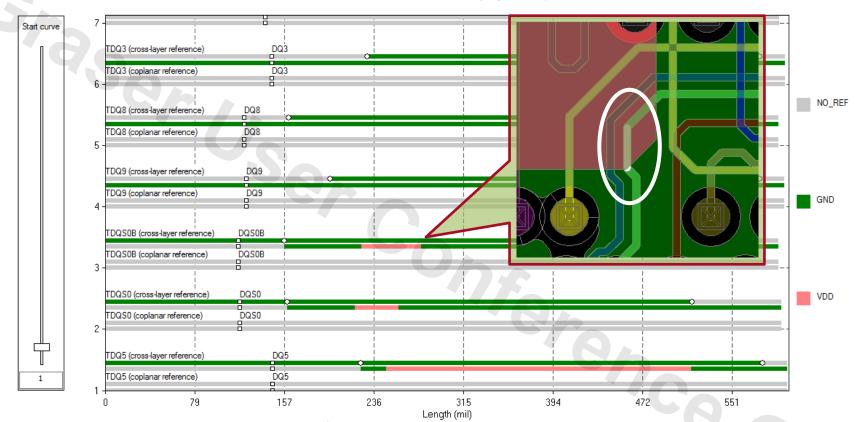
Cross probing helps to easily resolve issues



105 106 107 108 109 110 111 112 113

CADENCE PCB SOLUTION

Trace Coupling Check


Net count	Net name	Aggressor net with max coupling	Max coupling coefficient	% length with max coupling	% length with coupling coef >0.05	% length with coupling coef 0.001~0.05	Total coupling index (mm-%)
1	P3E_SLOT2_TX_C_DP0-P3E_SLOT2_TX_C_DN0	P3E_SLOT2_TX_C_DP1	0.163%	40.183		40.183	2.605
2	P3E_SLOT2_TX_C_DP1-P3E_SLOT2_TX_C_DN1	P3E_SLOT2_TX_C_DP2	0.573%	1.132		43.513	2.941
3	P3E_SLOT2_TX_C_DP2-P3E_SLOT2_TX_C_DN2	P3E_SLOT2_TX_C_DN1	0.573%	1.138		34.387	2.668
4	P3E_SLOT2_TX_C_DP3-P3E_SLOT2_TX_C_DN3	P3E_SLOT2_TX_C_DN2	0.1257	36.798		15.328	2.177
5	P3E_SLOT2_TX_C_DP4-P3E_SLOT2_TX_C_DN4	P3E_SLOT2_TX_C_DN3	0.125%	15.686		15.686	0.754
6	P3E_SLOT3_TX_C_DP0-P3E_SLOT3_TX_C_DN0	P3E_SLOT3_TX_C_DP1	0.156%	45.886		45.886	2.881
7	P3E_SLOT3_TX_C_DP1-P3E_SLOT3_TX_C_DN1	P3E_SLOT3_TX_C_DN0	0.147%	46.545		56.715	3.440
8	P3E_SLOT3_TX_C_DP2-P3E_SLOT3_TX_C_DN2	P3E_SLOT3_TX_C_DN1	0.156%	42.769		71.100	4.302
9	P3E SLOT3 TX C DP3-P3E SLOT3 TX C DN3	P3E SLOT3 TX C DN2	0.156%	55.397		60.345	3.541
10	P3E_SLOT3_TX_C_DP4-P3E_SLOT3_TX_C_DN4	P3E_SLOT3_TX_C_DP5	2.808%	26.979		68.281	47.643
11	P3E_SLOT3_TX_C_DP5-P3E_SLOT3_TX_C_DN5	P3E_SLOT3_TX_C_DN4	2.810%	28.293		71.503	54.733
12	P3E SLOT3 TX C DP6-P3E SLOT3 TX C DN6	P3E SLOT3 TX C DN5	2.810%	30.093		62.280	45.025
13	P3E_SLOT3_TX_C_DP7-P3E_SLOT3_TX_C_DN7						

- Tight coupling pairs
- Max coupling aggressor
- Dangerous vs. safe coupling
 →18X (= 2.81% / 0.156%)

Trace Reference Check

Trace Reference Plot (expanded)

- <u>Trace cross layer reference</u> shows the net names for the reference plane shapes directly above and below the corresponding trace segment
- <u>Trace coplanar reference</u> shows the net names for the reference plane shapes next to the corresponding trace segment on the same layer

Summary / Benefits

ERCs are better than DRCs for signal quality validation

 Identify issues geometry-based DRCs miss

- OrCAD Sigrity ERC specifically designed for PCB designers leveraging industry-leading Cadence Sigrity technology
 - Easy to use, minimal setup
 - Cross-probing
- Actionable results to identify and quickly address signal quality issues

CADENCE PCB SOLUTIONS

©2014 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, Sigrity, and OrCAD are registered trademarks and the OrCAD logo is a trademark of Cadence Design Systems, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

тм