

Chip, Package , Board Co- Simulation For 3D/2.5D IC Design

Eric Chen 13/Aug/2013

Trends and Challenges

Quest for higher data rate

- Clock speed
- Feature size -
- Power supply voltage
- Noise margin
- Packaging density 1

- Designer's Challenges
 - PI (On-chip PDN, SSO noise, ...)
 - SI (3D crosstalk, return current path, ...)
 - EMC (In-system EMI, noise immunity, ...)
 - Package design (MCP, SiP, PoP, SoC, ...)
 - Modeling / simulation
 - Cost down, short time-to-market, M

Why to Do Chip-Package-Board Co-Simulation

- Quite often the power and ground noise on the chip are computed under the condition that the voltage sources are connected directly at chip bumps.
- Sometimes simplistic per-pin RLC models are used that do not accurately represent the actual package and board effect.
- The power and ground noise, especially the dynamic voltage fluctuation, on the chip is dramatically different from that with voltage sources connected directly at chip bumps, and heavily depends on the package and board model used.
 - Adequate modeling of package and board effect is crucial to obtain reliable solution of dynamic voltage fluctuation on the chip.

Why does Chip-System Co-Design?

35

PDN Impedance Analysis

(At one observation port on metal1 layer)

Z Amplitude (Ohm)

2013 Graser AUG Diser TAIPEL Conference

PDN Impedance Analysis

Coupling Mechanism Among Signal/Power/Ground

- Vias coupling in free space is decreased and proportional to 1/r²
- Via coupling between field domain (waveguide like) may be enhanced and attenuated slowly.
- Field coupled is strong when field components are in parallel
- For TM/TE like field propagate between power/ground domain, signal via is strongly coupled with field between power and ground due to field components are in parallel.
- Chip level P/G grids are formed as domain and interact with signal (RDL)
- From system level perspective, current loops formed by signal to ground and power to ground will interfere with others

Challenges for System Level SSO Simulation

Receive

- The complex manual task for nodes linkages between circuits.
- No guaranteed for passivity and causality on each circuit block.
- Non-linearity of the whole system circuit network which include transistor models of drivers and receivers
- Lost DC accuracy without low frequency data from EM solver, especially for SI analysis with power aware
- Long run time and non-convergence result are commonly happened.

Cadence solutions are adopted to overcome problems listed as above

Additional Chip-to-Chip Interconnect

- Flip-chips and routable package substrates

 C4 bumps, RDL routing, and package routing (including vias)
- Through silicon via interconnect

- TSVs, micro bumps, and silicon interposers

High-Speed IO System-Level SSN Simulation

High-Speed IO System-Level SSN Simulation

System Architecture-2.5D IC

- There are 3 daughter dies placed on interposer, TC2 and 2 memory dies.
- Only TC2 and Interposer GDS layout are consider during the analysis.
 - 3rd party LPDDR3 DRAM is used and physical gds layout is not available. We just consider DDR I/Os on interposer directly.

System Architecture-Package

POSER

 LPDDR3 interface is implemented on interposer. Package design here is to play a role for power delivery for TC2 and memory dies.

STOCK OF	P rau a						60			
Layer #	Color	Layer Icon	Layer Name	Thickness	Material	Conductivity	Fill-in Dielectric	Permittivity	Loss Tangent	
			Medium03	0.005		U		4	0	
1			Signal\$TOP	0.00145		4.3e+007		[4.15]	[0.001]	
			Medium\$SIIVIA23	0.000775				4.3	0.002	
2			Signal\$SILM2	0.000900001		5.959e+007		[4.3]	[0.0011]	
	Are		Medium\$SIIVIA12	0.000619999				4.3	0.0002	
3			Signal\$SILM1	0.000900001		5.959e+007		[8.1]	[0.0011]	
			Medium\$TSV_VIA	0.1008				11.9	0.002	
4			Signal\$SILMB	0.002		4.3e+007		[8.2]	[0.001]	
			Medium\$C4_VIA	0.06		60	1	4.5	0	
5			Signal\$PKG_M1	0.015		5.959e+007		[4.5]	[0.0175]	
			Medium\$49	0.2032		G		4.5	0.035	
6			Signal\$PKG_M2	0.03048		5.959e+007		[4.5]	[0.035]	
	10		Medium\$51	0.2032				4.5	0.035	
7			Signal\$PKG_M3	0.03048		5.959e+007		[4.5]	[0.0235]	
152	*		Medium\$53	0.03				4.5	0.012	
8			Signal\$PKG_M4	0.018		5.959e+007		[4.5]	[0.0155]	
			Medium\$55	0.8				4.5	0.019	
9			Signal\$PKG_M5	0.018		5.959e+007		[4.5]	[0.0155]	
			Medium\$57	0.03		16		4.5	0.012	
10			Signal\$BOTTOM	0.015		5.959e+007		[4.25]	[0.006]	
			Medium01	0.35				4	0	
11			Signal01	0.03556		5.8e+007		[4]	[0]	
			Medium02	0.1			100	4	0	
12			Plane01	0.03556		5.8e+007		[1]	[0]	-

Power-Aware SI Analysis with Chip-Package Co-Simulation

- The power is supplied by voltage regulation module (VRM) on package
- Input impedance observed by TC2 or Memory that cause voltage droop at driver end and leads to signal quality and timing degradation.
- Traditional chips only analyze that powers the chip at interposer or driver end that will obtain over optimistic result and lead to wrong judgment on design problem.
- To overcome the long run time and non-convergence result in TD analysis, power-aware IBIS behavior model and passivity guaranteed chip and package models are required.

I/O Model Extraction with XcitePI-IOME

- TSVs model and I/O P/G/S are extracted independently and then combined into one SPICE netlist for interposer model generation.
- TC2 extracted I/O model will cascade with interposer part later in SystemSI

SSO/SSN Analysis with Cadence Solutions

XcitePI – IO Model Extraction IOME

I/O Model Extraction with XcitePI-IOME

XcitePI - IOME

Address Designe											L D X	
File Edit View Feature Window	v Help										cādence	
🗋 🗃 🖬 👯 🦉 🖉 🗸 🕶 🖬 🖬		🎠 🗙 🖾 🖽	VSS, VDDI	O_P 🕘 🔹 🛛	🝁 🖉 🖾 🖡	# E # •	• I• = I •	⊕ ⊞ ⊞				
Workflow: XcitePI X	McDesign1 - Layout										- 🗆 x	
IO Model Extraction Setup	1 <u>um</u> -8000 -6000 -4000 -2000 0	2000 40	00 6000	8000 10000	12000 14000	16000	18000 2	20000 22000	24000 26000	Laver Select	ion X	
Manage Design 💿								-65		TSVBump		
New Design										🛫 metalb		
Open Design		•		•		•				TSV	68 🖁	
Save										metal1		
Technology Setup	8	849 S.	1838. 1	S : 5 .	2222	S (S	:			VIA1		
Package Type										metal2	!!!	
Bump Parameter	i i i i i i i i i i i i i i i i i i i	•		· ·						VIA2		100
ISV Bump Parameter				E						VIA3		G
Via Resistance				1.22.						👕 metal4		
Chin Setun				package .						2 bump		
							6					
Chip Size						•••	c 27					
Bump						• •				25		
TSV Bump	87 87 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									-Display Reso	lution	
Via										6	Set	
Core Area												13-61
Circuit Setup 💿 🗌		• • •	• •	· · ·	•	••••				View O	nly Active Layer	225
Definition										Display Obje	cts Geometry By	
Placement	500			11						Net Col	lor	
Decap		÷.								O Layer C	Color	
External Component		xternal Comr	opent			-6	e				*** 🖂 🗰	
Output Setup		Atternar comp										1
Spice Netlist	Output	Na	ime	Layer	lix (u	im)	lly (um)	urx (um)	ury (um)	6	×	
Port	Please Input	ra	m2	bump	10096.6	30435	3102 873012	0125.0434/8	15871.021739		Save History	
Probe	Warning: decap, mimcap100_0, has no connected P/G	t	c2	bump	6341.7	82609	0.000000	12048.217391	2246.908696			
Performance Assessment	Reading finished at 07/03/13 14:21:34. Memory: 55 M	pac	kage	TSVBump	171.70	0000	0.000000	18360.960870	16370.334783			23
Checklist		New	Delete	Edit Madula 11	et and D	most		OK	Cancel	Apply		
View/Export Result		New	Delete		nLoda Ri	eport		UK		Apply		
View/Export Result			25					i nadi	no lavour nata i	inishen		1

2013 Graser AUG^{III} User TAIPEL Conference

XcitePI – IOME

EPA

XcitePI – IOME

XcitePI - interposer		aser				
ile Window Help						cādence
1 🖻 🖬 🛍 🔍 🖉 🖉 🛪 🕶 🖬 🖬 📾		K 🔝 🏥 VSS, VDDIO P 🔍 🔹				
orkflow: XcitePI	Kinterposer - Lavout	15	3-			
Circuit Setup 🔗 🔗 🔺	1-8000 I-6000 I-4000 I-2000 I0 I2	000 14000 16000 18000 110000	112000 114000 116000	0 118000 120000 122000	124000 126000	
Definition				individual initia diniti	Layer S	selection X
Placement	10				metal	b O
Decap					TSV	25
External Component		· · · · · · · · · · · · · · · · · · ·			FOX	29
Dutput Setup	2	المرتجع المرافق مورا مؤر مورا مؤر م	و د و و و و		😁 metal	1
Spice Netlist	Return/Insertion Loss				Lively (7.4.4	
Port						
Probe			6			i
Performance Assessment	Cell/Bump, NetName Cell/Bump, NetName	S Amplitude (dB)	r	Datum Lass		
Checklist	IO:tc2::PP_DQS_DDR[0] tc2::PP_DQS_DDR[0]	S Amplitude (db)	1	neturi LUSS		
Generation Desult	IO:tc2::PP_DQS_DDR[1] tc2::PP_DQS_DDR[1]	28				
new/Export Result	IO:tc2::PP_DQS_N_DD tc2::PP_DQS_N_DDR	2.0				
IO Path Selection	IO:tc2::PP_DQS_N_DD tc2::PP_DQS_N_DDR	-2.05	6			
Power Net	IO:tc2::PP_DQ_DDR[0] tc2::PP_DQ_DDR[0]	-2.9 +				
RL Per Bump/Cell	IO:tc2::PP_DQ_DDR[10] tc2::PP_DQ_DDR[10]	500	1000	1500 200 requescy (MHz)	0 2500	3000
RL 2D View	IO:tc2::PP_DQ_DDR[11] tc2::PP_DQ_DDR[11]				650	
RL Histogram View	IO:tc2::PP_DQ_DDR[12] tc2::PP_DQ_DDR[12]					
RL Distribution	IO:tc2::PP_DQ_DDR[13] tc2::PP_DQ_DDR[13]	S Amplitude (dB)	In	sertion Loss		
Capacitance (Grid Only)	IO:tc2::PP_DQ_DDR[14] tc2::PP_DQ_DDR[14]	E C	1		1	
Impedance (Grid Only)	IO:tc2::PP_DQ_DDR[15] tc2::PP_DQ_DDR[15]	-70				
Impedance (w/On-Die Ckt)	IO:tc2::PP_DQ_DDR[1] tc2::PP_DQ_DDR[1]	650				
Signal Net	IO:tc2::PP_DQ_DDR[2] tc2::PP_DQ_DDR[2]	-75				
RLC Per Bump/Cell	IO:tc2::PP_DQ_DDR[3] tc2::PP_DQ_DDR[3]	500	1000	1500 200	0 2500	3000
RLC 2D View	IO:tc2::PP_DQ_DDR[4] tc2::PP_DQ_DDR[4]	v	FI	requency (MHz)		
RLC Histogram View	Output				E.	
RLC Distribution	Please Innut					Caus Ulisters
Return/Insertion Loss					<u>Are</u>	Save History
Save Result	number of Snet on start componet is 0, no Zs(f) calculation SPICE model generation is completed at 07/03/13 14:37:25. N	Memory: 121 M. CPU: 127.18 sec				
Load Result	Result is saved into file: C:\SPB-CoSim_3DIC\lab_xcitepi\Inter	poser\result.				29

2013 Graser AUG^{III} User TAIPEL Conference

XcitePI – IOME

Model extraction

XcitePI - interposer				- 🗆 ×
ile Edit View Feature	Window Help			cādence
🖻 🖬 🔩 🖤 🖆 🔹 🗸 🔻	T 🗰 🗰 💲 🛯 🗄 🖼 🖾 🖼 🖾 👘 🗖 🔼 😭 👘	Þ≠ × 👪 💷 VSS, VDDIO_P 🚺 🍖 🔸 🖩 🏘 🌌 🖾 🗰 🗄 🕨 🕨		
orkflow: XcitePI	X sinterposer - Layout		1:32	. 🗆 × 🗋
ircuit Setup		12000 14000 16000 18000 10000 12000 114000 16000	18000 20000 22000 24000 26000 aver Selection	on X
Definition Placement	are		TSVBump	
Decap			TSV	
External Component	1000		Fox	Ĩ
utput Setup		د مربقه مربق مربق مربع المربع المربق مربق مربق مربق ال	🚾 metal1	
Spice Netlist	14000		VIA1	
Port			VIA2	
Probe	8		metal3	
rformance Assessment	UltraEdit-32 - C:\SPB-CoSim_3DIC\lab_xcitepi\Interpo	Jser\interposer.sp	25	
Checklist	檔案(F) 編輯(E) 搜尋(S) 專案(P) 檢視(V) 格式(T) 直	欄(L) 巨集(M) 進階(A) 視窗(W) 說明(H)		
w/Export Result	🗲 🔶 D 😅 🗂 🖬 🎒 🔕 🏘 📳 💘 🏭 📰 🐰 🖻	(🛍 5280 🛛 🔽 🗄 🗏 🗏 🗏 🖍 🚮 🐴 🛱 就 🗄 🖽 🔁 🥸	1 8 N?	
IO Path Selection Power Net RL Per Bump/Cell RL 2D View RL Histogram View	C\SPB-CoSim_3DIC\lab_xcitepi\Interposer\interposer\interposer C10203040 1 Compact double mesh (CDH) chip model ge 2 * Created time is at 07/03/13 14:35:18. 3 * Design Name is interposer. 4	er.sp C\SPB-CoSim_3DIC\lab_x perated by XcitePI (V12.0.8 1 * Compact double mesh 2 * Created time is at 0 3 * Design Name is inter 4	<pre>citepi\Interposer\interposer_RLCK.sp</pre>	
RL Distribution Capacitance (Grid Only Capacitance (w/On-Die Impedance (Grid Only) Impedance (w/On-Die Signal Net RLC Per Bump/Cell RLC 2D View	 5.SUBCKT interposer 6 + bump68_VSS bump81_YSS bump99_VSS 7 + bump110_VSS bump122_VSS bump132_VSS bump13 8 + bump162_VSS bump175_VSS bump137_VSS bump131 9 + bump138_VSS bump175_VSS bump133_VSS bump131 10 + bump117_VSS bump179_VSS bump153_VSS bump131 11 + bump169_VSS bump177_VSS bump202_VSS bump212 12 + bump230_VSS bump137_VSS bump169_VSS bump121 13 + bump100_VSS bump116_VSS bump13_VSS bump13_VSS bump131 14 + bump137_VSS bump16_VSS bump135_VSS bump131 15 + bump44_VDD10_PHASE bump46_VSS bump48_VDD1 	5 .SUBCKT interposer 6+ bump68_VSS bump81_V 7+ bump10_VSS bump122 17_VSS 8+ bump162_VSS bump175_V 7SS 9+ bump38_VSS bump175_V 15_VSS 10+ bump127_VSS bump175_V 15_VSS 10+ bump17_VSS bump177_VSS bump177_VSS 12 bump107_VSS bump177_VSS bump173_ 32_VSS 13+ bump100_VSS bump173_ 32_VSS 0_PHASE 15+ bump107_USS bump163_	'SS bump99_VSS VSS bump132_VSS bump154_VSS 'VSS bump187_VSS bump177_VSS 'VSS bump187_VSS bump103_VSS 'VSS bump2153_VSS bump155_VSS 'VSS bump202_VSS bump225_VSS 'VSS bump123_VSS bump133_VSS 'VSS bump176_VSS bump182_VSS 'VSS bump176_VSS bump182_VSS 'VSS bump166_VSS 'VSS bump166_VSS	Layer try By
RLC Histogram View	16 + bump53_VSS bump57_VDDIO_PHASE bump64_VSS	16 + bump53_VSS bump57_V	DDIO_PHASE bump64_VSS	×
Return/Insertion Loss	1			e History
Save Result			-	
Load Result	₿┘Ŭば⋶⋶⋶А⋒⋿⋷⋷∎А⊔⋒Ш⊯			
omize Workflow				
	如需說明檔案,請按 F1	列 1, 行 1, C0 DOS	修改: 2013/7/3 02:35: 大小: 4423888 插入	

2013 Graser AUG^{ID} User TAIPEL Conference

Published TSV Circuit Modeling

- We didn't calculate each via's partial inductance and mutual inductance. If we do so, that will form a huge circuit matrix that can't be simulated in HSPICE
- We adopt loop calculation. For example, we have n vias, then we have (n-1) loop, then we calculate (n-1) loop and consider coupling between loops. But loop coupling will decay very fast, then final circuit matrix will be small.

Published TSV Circuit Modeling

2013 Graser AUG Diser TAIPED Conference

XcitePI - IOME

(citePI - interposer Gra-		2:85°
e Edít Víew Feature Window Help		cādence
₩XcitePI - interposer		x
File Edit View Feature Window Help	U.	cādence
	🖸 🦣 🖻 🔼 🖀 🐘 😣 💹 🖆 VSS, VDDIO_P 📃 💽 🔹 📗 🗰 💷 🕨 🕨	
Workflow: XcitePI X Package Type	(J)	×
Bump Parameter	-4000 -2000 10 2000 4000 8000 8000 12000 12000 12000 12000 1	Layer Selection X
Stackup		metalb
Via Resistance		
Chip Setup		metal1
Chip Size		VIA1
Net		
TSV Bump	Alab_xcitepi\interposer\interposer_RLCK.sp	
Via		
Core Area 檔案(F) 编輯 檢視(V) 選項 説明(H)		SEI
$\begin{array}{c c} Circuit Setup \\ \hline \\ $		
Placement	2480 Cox_via105 NSIL105 N_428 1.942546	e-013
2481 * Cvia106 TSVB106 ref 1.942546e-013 Decap 2482 * Ovia107 TSVB107 ref 1.942546e-013	2481 Cox_via106 NSIL106 N_446 1.942546	e-013
External C(2483 * Cvia108 TSVB108 ref 1.942546e-013	2483 Cos_via108 NSIL108 N_466 1.942546	e-013
Output Setup 2484 * Cvia109 TSVB109 ref 1.942546e-013	2484 Cox_via109 NSIL109 N_468 1.942546	e-013
Spice Netl 2486 * Ovia111 TSVB110 ref 1.942546e-013	2460 Cox_via110 NGIE110 N_540 1.942540 2486 Cox_via111 NSIL111 N_548 1.942546	e-013
Prote	2487 Csillo NSILO ref 2.791895e-014	
Performance / >	2488 RsiI0 NSIL0 ref 3.144962e+006 2489 CsiI1 NSIL1 ref 2.791895e-014	
Checklist 🏓	2490 Rsil1 NSIL1 ref 3.144962e+006	
View/Export R	2491 Csil2 NSIL2 ref 2.791895e-014 2492 Rsil2 NSIL2 ref 3.144962e+006	
TO Path Se	2493 Csil3 NSIL3 ref 2.791895e-014	GEN
Power Ne	2494 Rsi/3 NSIL3 ref 3.144962e+006 2405 Csi/4 NSIL4 ref 2.7019055 014	Cras.
RL 2D V	2490 CSHEMBLEFETZ./ST835E-014 2496 Rsil4 NSIL4 ref 3.144962e+006	
RL Histon	2497 Csil5 NSIL5 ref 2.791895e-014	259
RL Distriction	2498 Rsilb NSiL5 ref 3.144962e+006 2499 Csil6 NSil 6 ref 2.791895e-014	Gra
Capacita I>	2500 Rsil6 NSIL6 ref 3.144962e+006	

2013 Graser AUG User TAIPEL Conference

SSO/SSN Analysis with Cadence Solutions

Transistor to IBIS v5.0 Conversion with T2B

erence

•

Package S-Parameter Extraction with PowerSI

P	ort			_ 🗆 ×					103	
	T Port1_INTERPOSE	R::VDD	V						and Give	
	 ፹ <mark>™</mark> Port2_INTERPOSEF	R::VDDIO_PHASE						• • • • • • •		
261	∃ Port3_INTERPOSEF	R::VDDQ				- 100 · ·			$\mathbf{e}_{i} = \mathbf{e}_{i} = \mathbf{e}_{i} = \mathbf{e}_{i} = \mathbf{e}_{i}$	
2	∃ P Port4_BGA::VDD	TO DHASE				6E1			• • • • • •	
	∃	Q				- 2 · · · · ·				
	·			4	Auto-norts					
	-Automatic Port Setting-				Auto porto		. Garalanalanalana		N	
	Net Based Pin Ba	ased			generation					
	Generate Ports for				generation		//. 9		· · · · 68	
	Layer 🛆	Circuit Name	Circuit Mode	el 👘			. //			
	Signal\$BOTTOM	P1	BGA		161				dre	
	Signal\$SILMB	INTERPOSER	INTERPOSE	R	50.		Port3 IN Port2_fivite	POSER: VDDIO PHASE		
	Signal01	BGA	NewEmptyC	ktDef					A	
						7.				
	- 465									
	Target Layer:	-Ground Ter	minals By:						• • • • • •	
G	Signal\$SILMB	O 4 4 4 4							<u> </u>	
		Area					GI	• • • • • • • • • • • • • • • • • • • •		
		O Manual	Selectior				* * /* / * / *	• • • • • • • •	201	
		0					· · · · · · ·	8		
	Generate Ports	O Search	Distance					• • • • • • • •		
							6 6 6 • •	• • • • • • •		
	Edit Different	tial Ports	Edit Circuit Port							
	New E	Eind & Fit	ort Reorder	Delete						
								E Fi	requenc	V
S Amplitude	I	package_routed_12051.spd							equenc	' y
1									SMOO	n
		390						ZE	30000	μ
	G							19-		
0.8						Frequency Rang		0		
					S-narameter	generat	ion			CEL X
					e parameter	generat				
0.6					- cer	Starting Freq.	Ending Freq.	Sweeping Mode	Freq. Increment	Points/Decade
					1.23	0 Hz	3 GHz	Adaptive		
					G	10				
04	/		\	\vee		GEI				
		10				6.20				
	6					0				
02	6.53-									
	121		2				6			
			195°				9			
			ar pr			Customize Fre	equency Ranges in	AFS: Default	OK	Cancel
0 10 10 10 10 10 10 10 10 10 10 10 10 10) 600 800 1000 1:	200 1400 1600 1800	2000 2200 240	0 2600 2800	3000				ar	
		Frequency (MHz)			29					

Broadband Model Conversion with BBS

SSO/SSN Analysis with SystemSI

- Blocked based topology editor with SPICE sub-circuits modeling approach
- I/O modeling flexibility for power-aware IBIS and transistor level circuits

2013 Graser AUG^D User TAIPEL Conference

Simulation Result-Ideal PDN for DQ[0:15]

- It is obviously that rise/fall slew rate categorizes to 3 groups.
- Slower charge and dis-charge on load that make signal can't reach to full high and low state.
- Will large RC of signals impact jitter and eye opening a lots?

Simulation Result-Ideal PDN for DQ[16:30]

Simulation Result-RLC Extraction For DQ[0:15]

Bump name	Net		R(Ohm)	Δ	L(nH)			C(pF)	(
bump293_PP_DQ_DDR[6]	PP_DQ_DDR[6]	Gu	48.4694		3.2797			0.561401	
bump281_PP_DQ_DDR[2]	PP_DQ_DDR[2]		49.959		3.31472			0.589096	
bump241_PP_DQ_DDR[11]	PP_DQ_DDR[11]		55.7621		2.30635			0.373289	
bump245_PP_DQ_DDR[13]	PP_DQ_DDR[13]		57.4191		1.29754			0.186612	
bump249_PP_DQ_DDR[15]	PP_DQ_DDR[15]	P	83.3328		1.63575			0.185425	13
bump236_PP_DQ_DDR[0]	PP_DQ_DDR[0]	350	105.21		3.66265			0.558155	
bump289_PP_DQ_DDR[4]	PP_DQ_DDR[4]		116.763		4.43087			0.684715	
bump299_PP_DQ_DDR[9]	PP_DQ_DDR[9]		124.84		3.16693	-6	8	0.500917	
bump295_PP_DQ_DDR[7]	PP_DQ_DDR[7]		279.983		6.35549			0.917687	
bump259_PP_DQ_DDR[1]	PP_DQ_DDR[1]		293.068		6.12851			0.775298	3El°
bump297_PP_DQ_DDR[8]	PP_DQ_DDR[8]	b	307.619		5.75101			0.685041	
bump243_PP_DQ_DDR[12]	PP_DQ_DDR[12]		315.273		4.19995			0.418102	
bump247_PP_DQ_DDR[14]	PP_DQ_DDR[14]		315.385		4.81455			0.572413	
bump287_PP_DQ_DDR[3]	PP_DQ_DDR[3]		317.473		6.46446			0.821224	
bump239_PP_DQ_DDR[10]	PP_DQ_DDR[10]		328.795		5.68991			0.651809	
bump291_PP_DQ_DDR[5]	PP_DQ_DDR[5]		346.292		7.07552			0.878386	

- During the SPICE model extraction by XcitePI, RLC values are generated as well.
- Resistance of each net reflects the length and width of RDL route.
- Improper placement of TC2 and mem dies that cause RDL length discrepancy significantly and lead to large discrepancy in RL value.
- Large RC values that maps to worse signal quality and timing margin.

Simulation Result-RLC Extraction For DQ[16:30]

Bump name	Net	ré	R(Ohm)	$ \Delta $	L(nH)		C(pF)	
bump283_PP_DQ_DDR[30]	PP_DQ_DDR[30]	1	34.3671		5 ^{EC} 1.42	2753	().247769	
bump277_PP_DQ_DDR[28]	PP_DQ_DDR[28]		58.0473		1.3	6851	r (0.196704	
bump273_PP_DQ_DDR[26]	PP_DQ_DDR[26]		70.1409		2.32	2963	().396866	
bump263_PP_DQ_DDR[21]	PP_DQ_DDR[21]		79.503		3.93	1352	().827598	
bump269_PP_DQ_DDR[24]	PP_DQ_DDR[24]	EL	80.3488		3.00	0485	(0.495025	
bump257_PP_DQ_DDR[19]	PP_DQ_DDR[19]		80.6993		3.30	6821	().599283	
bump267_PP_DQ_DDR[23]	PP_DQ_DDR[23]		106.942		4.24	4413	().678631	
bump253_PP_DQ_DDR[17]	PP_DQ_DDR[17]		122.531		4.0	7635		0.61541	
bump285_PP_DQ_DDR[31]	PP_DQ_DDR[31]	1	221.814		3.2	8349	(0.438711	
bump271_PP_DQ_DDR[25]	PP_DQ_DDR[25]		253.277		4.68	8389		0.50802	
bump279_PP_DQ_DDR[29]	PP_DQ_DDR[29]		282.102		4.03	1578	().343756	
bump251_PP_DQ_DDR[16]	PP_DQ_DDR[16]		296.592		5.92	2323		0.80677	
bump255_PP_DQ_DDR[18]	PP_DQ_DDR[18]		330.227		6.6	7474	().857893	
bump265_PP_DQ_DDR[22]	PP_DQ_DDR[22]		333.358		6.7	1043	(0.831939	
bump261_PP_DQ_DDR[20]	PP_DQ_DDR[20]		366.846		6.8	7882	6130	0.975814	
bump275_PP_DQ_DDR[27]	PP_DQ_DDR[27]		469.645		5.39	9636		0.44823	

- Comparing with TC2 to mem1 route, TC2 to mem2 is more worse in RLC
- This also leads to more worse signal and timing quality than TC2 to mem1 data group.

Simulation Result-Non-Ideal Power Comparison DQ[0:15]

2013 Graser AUG^{III} User TAIPEL Conference

Simulation Result--Non-Ideal Power Comparison DQ[0:15]

What If Analysis

- DQ5 has longer RDL length than **DQ6**.
- On metal4, both signals have the • same metal width.
- The width of DQ5 on metal3 is • just 1/10 of DQ5/DQ6 on metal4
- Change width of DQ5 to get lower • resistance **BBox Property**

Net

Left

Net

PP_DQ_DDR[5]

PP_DQ_DDR[6]

Capacitance of DQ5 is • higher than original

Bump name

bump291_PP_DQ_DDR[5]

bump293_PP_DQ_DDR[6]

What If Analysis

 After changing width for DQ[1,3,5,7,8,12,14,10], we can see that the eye opening has great improved.

Cadence Sigrity Products

