

PDS Impact for DDR3-1600 Low Cost Design

Jack W.C. Lin Sr. AE Manager jackl@cadence.com Aug. 13 2013

Cadence, OrCAD, Allegro, Sigrity and the Cadence logo are trademarks of Cadence Design Systems, Inc. All other trademarks and logos are the property of their respective holders.

cādence[®]

Current DDR3 design trend and challenge

Timing and Signal Integrity Impacted by PDS

PDS design challenge

Summary

Agenda

Agenda

Current DDR3 design trend and challenge

Power aware timing and signal integrity

PDS design challenge

Co-simulation for system Level PDS

Summary

cādence

Low Cost and High Performance

- DDR3 & LPDDR3 are dominant in current consumer market
- Low-cost package like wirebond BGA, CSP, LQFP
- Fewer layers of PCB, even 2 layers PCB is adopted

It is challenging.....

- Problem we will meet:
 - High density route and leads to serious crosstalk
 - Imperfect reference plane that cause signal with bad return path discontinuity (RPD)
 - Wirebond/lead inductance that causes larger insertion loss of signal at high frequency
 - Higher current loop inductance for P/G pins and leads to larger impedance
 - Traditional equal length requirement is no longer valid
 - Timing margin is power/noise aware

cādence°

Current DDR3 Design Trend and Challenge

Agenda

Summary

Timing and Signal integrity impacted by PDS

- What did we see from the signal measurement?
 - Signal rise and fall change to faster slew rate
 - Signal pulse width becomes wider (high time and low time)
 - Signal amplitude becomes larger
- Does PDS impact a lots?
- If your design has bad
 PDS and how to improve it?

Timing and Signal Integrity Impacted by PDS

Voltage (V)

Timing and Signal Integrity Impacted by PDS

- Signal output from I/O buffer is affected by PDS impedance.
- Current demand by I/O buffer is limited if impedance of PDS is large.
- Smaller I/O current (sink from PDS) that causes signal amplitude becoming smaller (slow charge/discharge to the load).
- For such high switching rate I/Os, try to stay system PDS in low impedance is the best policy.

Timing and Signal Integrity Impacted by PDS

- Physical equal length can't guarantee zero skew
- Electrical timing skew without buffer still can't reflect timing skew in the real world
- Crosstalk among signals, large PDS noise (SSO noise) and strong coupling among signals and P/G planes that causes timing push-out/pull-in and small high/low time of the signal pulse.
- Even 1/4T timing offset at controller is still likely to get failed timing at memory.
- Strobe signals need to be isolated from DQs and keep least return path for reducing coupling with P/G.

Current DDR3 design trend and challenge

Timing and Signal Integrity Impacted by PDS

PDS Design Challenge

Solutions for system Level PDS Co-simulation

Summary

PDS Design Challenge

- Traditional TD analysis is time consuming and hard to diagnose the root caused that make PDS failed
- FD analysis will reveal the characteristic of PDS easily and reveal the physics behind that make PDS failed

cādence[°]

PDS Design Challenge Behavior of input impedance in system level

8 **Package Only** Chip Decap 0000000 7 Package Decap Decap 6 Printed Circuit Board Impedance(Ω) 5 **Entire PDS** 4 **Package mounted** on Board 3 2 1 Chip Only 0 0^{0.05} 0.5 1.5 2 2.5 3 Frequency (GHz)

cādence

PDS Design Challenge Mid-frequency resonance

PDS Design Challenge

Тор

Bottom

98 VDD balls 227 VSS balls

- (2)How to generate model from 2 to N nodes for accounting PDS noise at different frequency bandwidth with executable model size?
- (3)It needs a platform that can cascade all circuit blocks automatically to complete such complex system level simulation

Current DDR3 design trend and challenge

Timing and Signal Integrity Impacted by PDS

PDS Design Challenge

Co-simulation for system Level PDS

Summary

Co-simulation for system Level PDS

Step1. create observation ports on chip design

- To create Vio and Vcore observation ports.
- Vio/Vcore ports can be selected and created from IO/Core circuits.
- Any extra observation ports can be setup manually.
- To create MOS cap ports manually

Step2. create bump ports

 To set a reference bump and generate bump ports automatically for later MCP connection with die pads of the package cādence

Step3. Run FD simulation and save as MCP circuits

Present Curves 📃 🔺			
RGO_2013Q1V1GFFLPE	Y-Axis	Cours Circulation Denut	
RGO_2013Q1V1GFFLPE	1e+UU/	Save Simulation Result X	
RG0_2013Q1V1GFFLPE			
		Network parameter file BNP Format	
BGO 2013Q1V1GFFLPF	1e+006		
RGO_2013Q1V1GFFLPE		Save to E:\DDR3 1600 Himax\Chip IO data\Chip IO decaps\pdn.bnp	
RGO_2013Q1V1GFFLPE			
VDD_L ~ VDD_L(78)	1e+005		
VDD_H~VDD_F Show S	elected Curves	Data type Save the following network parameter(s)	
mos_cap_l1 ~ m Hide Se	elected Curves		
mos_cap_12 mi FD Calo	c	🔍 🔍 🔿 RI ODB OMA 🔽 S 🛛 Y 🗖 Z SDIFF	
mos_cap_is mi	ty		
mos cap h1~m Save			
mos_cap_h2 ~ m Save Si	mulation Result		
mos_cap_h3 ~ m		Export passivity enfored S-Paramters	
mos_cap-h4~ m	Name Order	[]	
BumpPort0 ~ (Z Reverse	e Name Order	MCP Output E: \DDR3_1600_Himax\Chip_10_data\Chip_10_decaps\pdf	
BumpPort1 (2) Reset S	selected Curves Colors		
BumpPort2 (220)			
BumpPort4 ~ (722)	10		
BumpPort5 ~ (Z23)		OK Cancel	
📕 BumpPort6 ~ (Z24)			
BumpPort7 ~ (Z25)			
BumpPort8 ~ (Z26)			
BumpPort9 ~ (Z27)			
BumpPortI0 (228)			
	200	400 600 800 1000 1200 1400 1600 1800 Frequency (MHz)	2000

 Enforce passivity (in case you would like to perform TD PDN simulation) and MCP generation are enable.

cādence

Step4. load chip MCP circuit into OptimizePI

1	MCP Selector					×		
	Internal File: E:\DI	DR3_1600_Himax\P						
Circuit: pdn_bump_port Connection: pdn_bump_port_1.pdn_bump_portModel 104pi						04pi Edit		
	Choose a connection by d	hoose a connection by double-clicking the list						
I	Ckt Name Ckt Model		Num of Pins		Туре			
I	<pre>pdn_bump_port_1</pre>	pdn_bump_port	Model	104	PKG			
			Pin matching dia	log				□ ×
	 To choose of model file at bump ports Either Coord Name Match help to link of the packa automatical 	chip MCP nd enable circuit d or h can chip die pads age ly.	Coordinate based Position Tolerar Use manual First node: 246 Pin (PKGU1)	d matching settings	Angle Tolerance (de	g) 1	Name Match: 0 matches, 104 not Coord Match: 104 matches, 0 not	Default Match matched Detail
								Coord Match Name Match

Step5. setup MOS caps and on-die observation

- Choose package die circuit and sub-circuit of chip model will show up.
- To find out circuit terminals of MOS caps and set decap ports for later optimization.
- To find out circuit terminals of on-die observations

Step6. MOS caps Optimization

• Make original decaps fixed on PCB and study MOS caps effect only.

Step7. "off-chip decaps Optimization"

- Fixed optimized MOS caps as we found in step7
- Allow decaps on board can be optimized.

Impedance (Ohm)

Impedance vs. Frequency

Step8. coupling between core and IO power domain through "Device Optimization" with off-chip decaps

 Mutual impedance observations between Vio and Vcore can be monitored during input impedance optimization. Mutual impedance will be optimized as well.

Summary

- Low cost design implies more technical challenge to be overcome.
- System level PDS becomes an critical issue that impacts timing and signal integrity.
- Co-simulation between chip and off-chip that helps to dig out potential PI problems which may not be found in the sub-system of chip + package + board.
- To face LPDDR3/DDR3 or DDR4, how to make P/G stay at low impedance is first priority.
- To control signal and P/G current loops that help to reduce coupling between them and lead to better timing skew control.

