

Allegro PCB: What's New in 17.2 QIR#3

Allegro PCB v17.2 #QIR3(S016) 強化功能重點:

- Allegro PCB Symphony Team Design Option 功能增強
 - 讓使用者有更大的空間方便使用 Symphony 內的功能來 完成 PCB Design。
- 3D Canvas 功能介紹
 - 可配合 STEP 從 3D 角度來做零件的干涉檢查和了解整個PCB 設計好的狀況。

Date: 2017 / 05/ 16
Author: Messi
Revision:
Version: SPB_17.2 QIR3
備註:

Graser http://www.graser.com.tw

Graser

Allegro PCB Symphony Team Design Option 功能增加

此次 Allegro_17.2QIR3 的 Allegro PCB Symphony Team Design Option 新增了幾項功能,讓設計人員能透過這些新增功能更方便在 Symphony Team Design Option 做操作和設計 PCB。

Placement

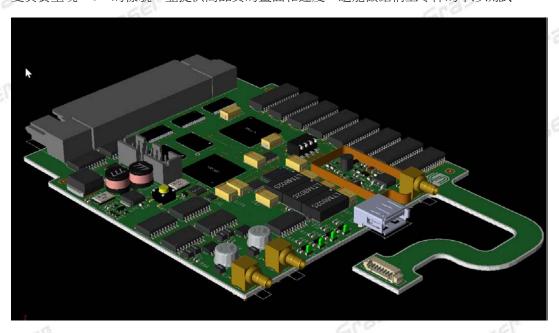
Component swapping 可轉換同性質的零件功能。

Shape Editing

新增動態銅和靜態銅可以做 Move、copy、change 及 spin 功能。

Manufacturing

新增手動加測點、delete、move 測點、檢查測點等功能。

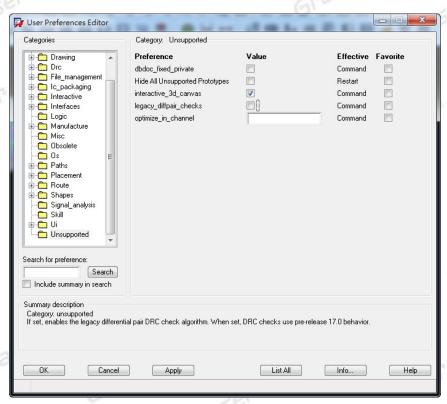

General

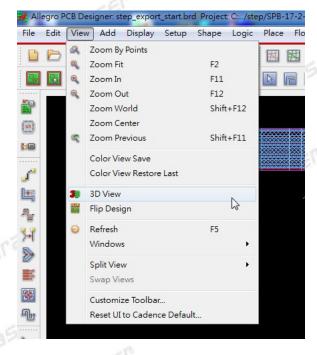
新增選擇的物件可以進行加入或取消 FIXED property 功能。

新增選擇的物件可以進行 copy 和 paste 到多個目標點和支援 paste 按右鍵的 Snap Pick 功能。

3D Canvas

Allegro 3D Canvas 是一個新的 3D Viewer 介面, 3D Canvas 搭配 STEP File 來讓 Allegro 3D Canvas 更真實呈現 PCB 的樣貌,並提供高品質的畫面和速度,還能做結構上零件的干涉測試。




Gras

初步設定

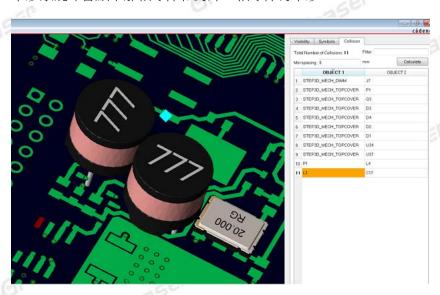
當要執行 3D Canvas 前需要先到 Setup > User Preferences > Unsupported 裡 interactive_3d_canvas 打勾,這樣才能開啟新的 3D Canvas。

開啟 3D Canvas 可以從 Toolbar 的 Icon 🌉 裡執行 3D Canvas 或是在 View > 3D View 來執行。

操作介紹

可以依照以下方式來操作 3D Canvas 裡的 PCB:

滑鼠滾輪可以放大和縮小 PCB。


單擊滑鼠中間按鍵並按住,可以抓取 PCB 做平移動。

單擊滑鼠中間按鍵並按住再加上 Shift,可以讓 PCB 做任意方向旋轉。

操作内容

Basic Collision Detection :

- 在 3D Canvas 新增干涉檢查功能,此功能可以在 3D canvas 做干涉檢查,幫助我們了解目前零件的擺放狀況和是否有跟其他零件或外殼干涉。
- 操作是在 3D Canvas 裡右邊視窗選擇 Collision 功能,系統開始做干涉檢查,如有零件有干涉系統即會顯示那顆零件和另外一顆零件有干涉。

• 新增 2 種新的 Pane:

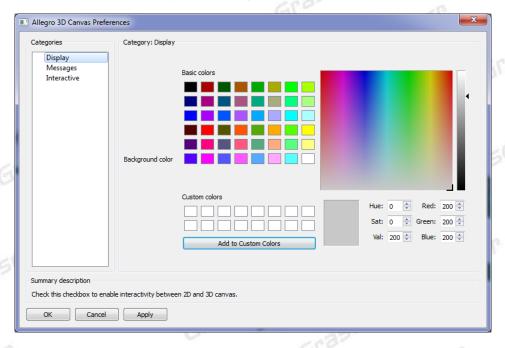
Graser

在 3D Canvas 畫面底下新增一個 Messages 視窗,使用者可以從這個視窗看到 PCB 的資訊或者是錯誤訊息。

Visibility Pane 可以針對 Conductors、Planes、Masks、Dielectrics 裡的 Line、Pin、Shape、Via 或 Text 物件來快速打開或關閉,讓在 3D Canvas 看圖時更方便切換和選擇圖的樣式。

• Preferences 功能視窗:

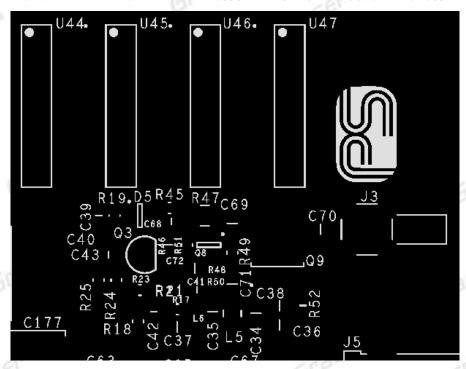
Graser

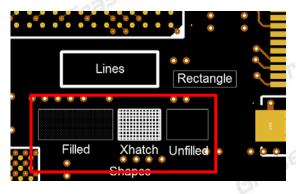

可以從 3D Canvas 裡的 Setup > Preferences 來開啟視窗,並可以做三種設定:

Display: 3D Canvas background 的顏色設定。

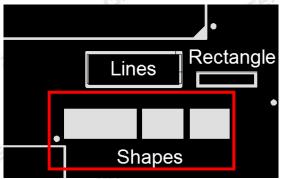
Messages:訊息顯示設定,當打勾後再重新開啟 3D Canvas, Messages 就不會顯示訊息。

Interactive: 3D Canvas 和 Allegro 工作區的連動設定。


當選擇 disabled,在 Allegro 做動作,將不會更新到 3D Canvas。

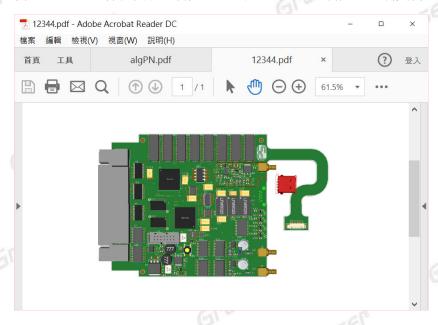


此更新已經可以顯示 Silkscreen 零件位置文字,但還維持舊版顯示零件的 Outline



此版本也可以顯示 Shape 的 Rectangles, 但在 3D Canvas 裡 Shape 所呈現的都是 Fill Shape。

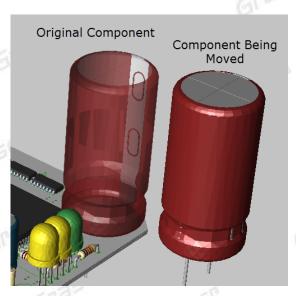
Graser



3D Canvas

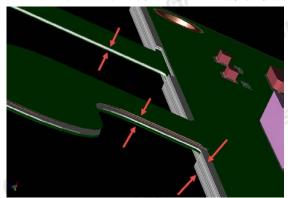
Gras

• **2D PDF** 文件輸出功能:


此版本也支援了 2D PDF 輸出功能,可以從 3D Canvas 的 File > Export 來輸出 PDF 文件, 輸出的 PDF 文件但內容只會是 2D 呈現,而且也只會是表面層資料,不會有內層資料。

3D to 2D Move Command :

此次也新增了零件移動指令,我們可以從 3D Canvas 裡點選零件,零件就會呈現紅色,然後 滑鼠右鍵可選擇 Move 指令,此時零件會變成透明狀,移動的零件會是實心狀,我們移動時 只能僅限於 X 和 Y 平面,當零件移動完成後會更新到 Allegro PCB 上,所以會有連動關係。 移動時也可從 Options 來選擇 Etch 的關係。



Zone Aware 3D :

此版本也新增顯示疊層的厚度。此厚度是依據 Allegro Cross Section Editor 設定的厚度。

Miscellaneous Updates to 3D Canvas :

此版 3D Canvas 的介面也更新了跟 Allegro PCB 一致

Status bar 添加 Units: 這會跟 Allegro 一致。

Status bar 添加 X、Y、Z 座標:參考點為鼠標。

滑鼠的操作跟 Allegro 的操作更新為一致。

Dynamic Ratsnest

舊版本的 Dynamic Ratsnest 是要移動零件到一個定點後按下 Done,鼠線才會更新 Net

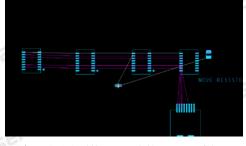
Schedule,這會讓使用者在操作上比較繁瑣,而且無法即刻了解到 Net Schedule 狀況。

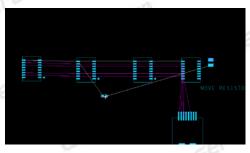
但新版 Dynamic Ratsnest 功能是當在 Move 零件時, 鼠線就會立即跟這零件的移動而更新 Net

Schedule, 這方便在 Placement 時,使用者可以即時了解 Net Schedule 的狀況。

但這功能還是有一些例外 Net Schedule 不在包含內:

User-defined net schedule


System-defined net schedule

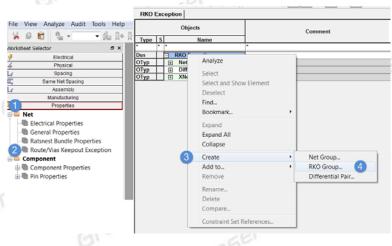

Power nets

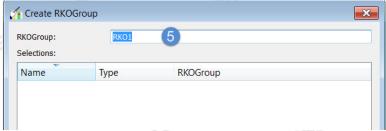
Ground nets

Nets with pin-count greater than 20

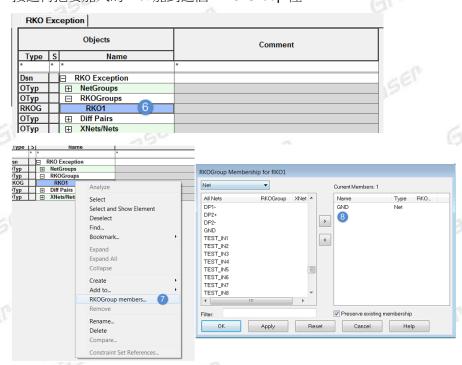
Components with pin-count greater than 100

注意:如果要停止此功能,可以從 Setup > User Preferences > Placement > General folder No_dynamic_ratsnest 來設定。

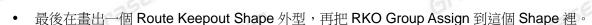


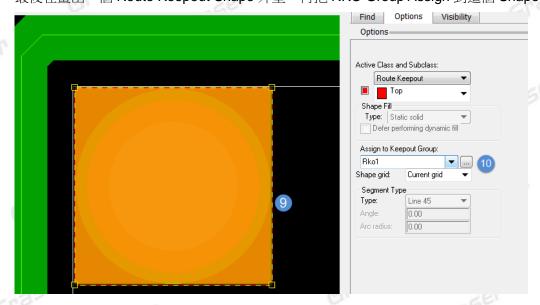

Gras

Route Keepout Net Exceptions

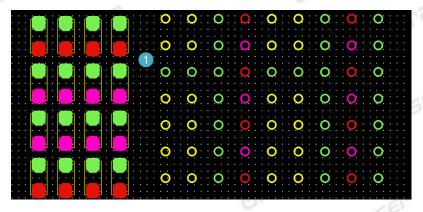

此版新增可以讓 Route Keepout 禁制區加入一個 Net 群組,讓在經過這個 Route Keepout 裡的 Net 不會產生 DRC,而這個 Net 群組可以從 Constraint manager 來設定。

• 在 Constraint manager 創建一個 PKO Group, 然後給這個 PKO Group 一個名稱。



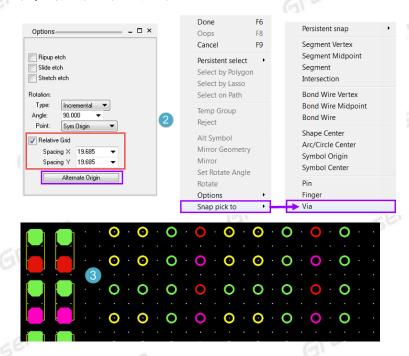


• 接這再把要加入的 Net 加到這個 PKO Group 裡。

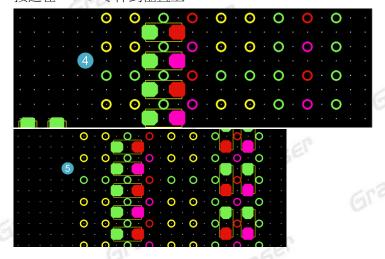


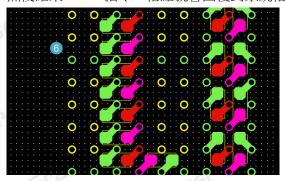
Relative Grid

此新功能是新增在 Move 指令裡,使用 Move 功能,在 Option 裡做 Relative Grid。這功能可以設定 X 和 Y 的格點來替代 PCB 裡的格點,這個有助於幫助搬移零件時,可以準確的搬移到位置上。這功能可以運用在 Bypass 的電容要搬到 BGA 有電源或接地的 Vias 裡,這邊要搬移往往需要變更系統的格點才能準確地擺放在正確位置,但如果有 Relative Grid 功能就能輕鬆又準確地放零件,當結束 Move 指令 Relative Grid 就會回復到原本系統的格點了。

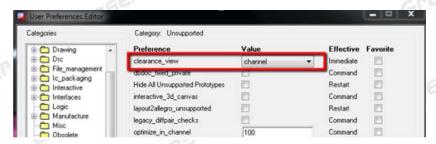

Relative Grid 的操作:

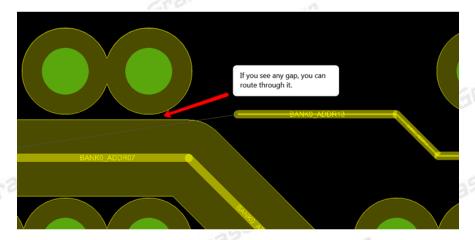
Graser




先執行 Move 指令,然後在 Options 勾選 Relative Grid,然後設定安全間距 X 和 Y,接這在 BGA 上的 Vias 運用 Snap pick to > Via,把 Spacing 套到 Vias 上,(這時會發現 Grid 已經改變)這樣偏移的格點就改變了。

• 接這在 Move 零件到位置上。


• 然後結束 Move 指令,格點就會回復到系統格點。



Route Clearance View

此功能是在拉線時會快速顯示 Spacing,這個 Spacing 是依據 Constraints 裡的設定,這有助於在 Routing 時我們估計空間的規劃,也能快速知道線寬的安全間距。

Padstack Editor XML Import

此功能是可以透過 Cadence 用程式來宣告做成一個 Pad,那這個程式也做成一個範本,使用者只要從這個範本輸入 Pad 參數,即可產出一個.XML File,這個.XML File 就可以 Import 到 Padstack 裡,這樣就可以做出一個 PAD。

那這個範本可以從以下找到。

<installation_hierarchy>\share\pcb\xml-formats\cdn_padstack.dtd

本版Technic Note版權為 映陽科技股份有限公司 所有,未經允許不得任意轉用。 © 2017 Graser Technology Co.,Ltd.